Akiyoshi Uemura

Learn More
Tlx belongs to a class of orphan nuclear receptors that underlies many aspects of neural development in the CNS. However, the fundamental roles played by Tlx in the control of eye developmental programs remain elusive. By using Tlx knock-out (KO) mice, we show here that Tlx is expressed by retinal progenitor cells in the neuroblastic layer during the period(More)
The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress(More)
The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived(More)
OBJECTIVE Vascular endothelial growth factor (VEGF) exerts proangiogenic action and induces activation of a variety of proangiogenic signaling pathways, including the Rho family small G proteins. However, regulators of the Rho family small G proteins in vascular endothelial cells (ECs) are poorly understood. Here we attempted to clarify the expression,(More)
BACKGROUND Drugs inhibiting vascular endothelial growth factor (VEGF) signaling are globally administered to suppress deregulated angiogenesis in a variety of eye diseases. However, anti-VEGF therapy potentially affects the normal functions of retinal neurons and glias which constitutively express VEGF receptor 2. Thus, it is desirable to identify novel(More)
We determined the neurotrophic activity of interleukin-2 (IL-2) on primary cultured neocortical neurons from embryonic rat brain. IL-2 clearly enhanced the viability of cultured neurons in a dose-dependent manner. The neurotrophic effect of IL-2 was completely neutralized by IL-2 antibody. Furthermore, expression of IL-2 receptor mRNA was more pronounced in(More)
Retinopathy of prematurity causes visual impairment due to destructive neoangiogenesis after degeneration of the retinal microvasculature. This study was aimed at analyzing whether local delivery of Semaphorin-3C (Sema3C) suppresses pathological retinal angiogenesis. Sema3C exerted potent inhibiting effects in cellular models of angiogenesis. In an(More)
Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated(More)
PURPOSE To elucidate the role of signals mediated by EphB4 receptor tyrosine kinase and its transmembrane ephrinB2 ligand in corneal lymphatic capillaries. METHODS To detect expression of ephrinB2 and EphB4 in mouse corneas, immunohistochemistry of flat-mount corneas from 6- to 10-week-old wild-type, Efnb2-lacZ, and Ephb4-lacZ mice on a C57BL/6 background(More)
PURPOSE We investigated the effects of semaphorin 3E (Sema3E)/PlexinD1 signaling in the development of choroidal neovascularization (CNV) and explored the therapeutic potential of the pathway. METHODS We used a laser-induced CNV model in the mouse. The expression of Sema3E and PlexinD1 was evaluated with immunohistochemistry, real-time RT-PCR, and Western(More)