Akitomo Nagashima

Learn More
Directional transport of the phytohormone auxin is established primarily at the point of cellular efflux and is required for the establishment and maintenance of plant polarity. Studies in whole plants and heterologous systems indicate that PIN-FORMED (PIN) and P-glycoprotein (PGP) transport proteins mediate the cellular efflux of natural and synthetic(More)
Transcription in higher plant plastids is performed by two types of RNA polymerases called NEP and PEP, and expression of photosynthesis genes in chloroplasts is largely dependent on PEP, a eubacteria-type multi-subunit enzyme. The transcription specificity of PEP is modulated by six nuclear-encoded sigma factors (SIG1 to SIG6) in Arabidopsis thaliana.(More)
A eubacteria-type RNA polymerase (PEP) plays crucial roles for chloroplast development in higher plants. The core subunits are encoded on plastid DNA (rpo genes) while the regulatory sigma factors are encoded on the nuclear DNA (SIG genes). However, the definite gene specificity of each sigma factor is unknown. We recently identified an Arabidopsis(More)
The plastid genome of higher plants contains more than one hundred genes for photosynthesis, gene expression, and other processes. Plastid transcription is done by two types of RNA polymerase, PEP and NEP. PEP is a eubacteria-type RNA polymerase that is essential for chloroplast development. In Arabidopsis thaliana, six sigma factors (SIG1-6) are encoded by(More)
Three new nuclear genes (sigD, sigE and sigF) of Arabidopsis thaliana, encoding putative plastid RNA polymerase sigma factors, were identified and analyzed. Phylogenetic analysis revealed that higher plant sigma factors fell into at least four distinct subgroups within a diverse protein family. In addition, Arabidopsis sig genes contained conserved(More)
N-1-Naphthylphthalamic acid (NPA) causes the abnormal growth and development of plants by suppressing polar auxin transport. The mechanisms underlying this inhibition, however, have remained elusive. In Arabidopsis, we show that a defect in the ABC subfamily B auxin transporter AtABCB19 suppresses the inhibitory effects of NPA on hypocotyl phototropism and(More)
Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on(More)
In Arabidopsis thaliana, a mature mesophyll cell contains approximately 100 chloroplasts. Although 12 arc mutants (accumulation and replication of chloroplasts) and two chloroplast division genes homologous to eubacterial ftsZ have been isolated from A. thaliana, the molecular mechanism underlying the chloroplast division is still unclear. We characterized(More)
To study the functions of nuclear genes involved in chloroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on one of these albino mutants, designated apg3-1 (for a lbino or p ale g reen mutant 3). A gene encoding(More)
Photoreceptors, phytochromes and cryptochromes regulate hypocotyl growth under specific conditions, by suppressing negative gravitropism, modulating phototropism and inhibiting elongation. Although these effects seem to be partially caused via the regulation of the phytohormone auxin, the molecular mechanisms underlying this process are still poorly(More)