Akira Suyama

Learn More
A number of single nucleotide polymorphisms (SNPs) are considered to be candidate susceptibility or resistance genetic factors for multifactorial disease. Genome-wide searches for disease susceptibility regions followed by high-resolution mapping of primary genes require cost-effective and highly reliable technology. To accomplish successful and low-cost(More)
Autonomous DNA computers have been attracting much attention because of their ability to integrate into living cells. Autonomous DNA computers can process information through DNA molecules and their molecular reactions. We have already proposed an idea of an autonomous molecular computer with high computational ability, which is now named(More)
In the whiplash polymerase chain reaction (WPCR), autonomous molecular computation is implemented in vitro by the recursive, self-directed polymerase extension of a mixture of DNA hairpins. Although computational efficiency is known to be reduced by a tendency for DNAs to self-inhibit by backhybridization, both the magnitude of this effect and its(More)
In this work, a detailed coupled equilibrium model is presented for predicting the ensemble average probability of hybridization error per chip-hybridized input strand, providing the first ensemble average method for estimating postannealing microarray/TAT system error rates. Following a detailed presentation of the model and implementation via the software(More)
In this paper we report on a module in the RTRACS (Reverse-transcription and TRanscription-based Autonomous Computing System) molecular computing system, constructed with DNA, RNA and enzymes. The module is a 2-input logic gate that receives input and produces output in the form of RNA molecules. Each of the two input molecules is chosen from a set of two,(More)
A new readout approach for the Hamiltonian Path Problem (HPP) in DNA computing based on the real-time polymerase chain reaction (PCR) is experimentally implemented and analyzed. Several types of fluorescent probes and detection mechanisms are currently employed in real-time PCR, including SYBR Green, molecular beacons, and hybridization probes. In this(More)
In recent years, various DNA nanomachines driven by DNA hybridizations have been developed as a remarkable application of DNA computers for nanotechnology. Here, we propose an oscillatory reaction system as a nano-sized nucleic acid engine to control the nanomachines. It utilizes DNA/RNA and their molecular reactions, and is modeled after the circadian(More)