Akira Odani

Yoji Kitamura4
Kazuma Ogawa4
Tatsuto Kiwada2
4Yoji Kitamura
4Kazuma Ogawa
2Tatsuto Kiwada
Learn More
  • Kazuma Ogawa, Katsuichi Ohtsuki, Tomomi Shibata, Miho Aoki, Morio Nakayama, Yoji Kitamura +6 others
  • 2013
(99m)Tc-HYNIC-annexin A5 can be considered as a benchmark in the field of apoptosis imaging. However, (99m)Tc-HYNIC-annexin A5 has characteristics of high uptake and long retention in non-target tissues such as kidney and liver. To minimize this problem, we developed a novel (99m)Tc-labeled annexin A5 using a bis(hydroxamamide) derivative [C3(BHam)2] as a(More)
The 1.7 Å X-ray crystal structure of the B-DNA dodecamer, [d(CGCGAATTCGCG)]₂ (DDD)-bound non-covalently to a platinum(II) complex, [{Pt(NH₃)₃}₂-µ-{trans-Pt(NH₃)₂(NH₂(CH₂)₆NH₂)₂}](NO₃)₆ (1, TriplatinNC-A,) shows the trinuclear cation extended along the phosphate backbone and bridging the minor groove. The square planar tetra-am(m)ine Pt(II) units form(More)
  • Kazuma Ogawa, Atsushi Ishizaki, Kenichiro Takai, Yoji Kitamura, Tatsuto Kiwada, Kazuhiro Shiba +1 other
  • 2013
(68)Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68)Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic(More)
BACKGROUND Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the(More)
UNLABELLED BACKGROUND Sigma receptors are highly expressed in human tumors and should be appropriate targets for developing tumor imaging agents. Previously, we synthesized a vesamicol analog, (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol ((+)-pIV), with a high affinity for sigma receptors and prepared radioiodinated (+)-pIV. As a result, (+)-[125I]pIV(More)
Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as(More)
  • 1