Learn More
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics(More)
The discovery of the MADS-box genes and the study of model plants such as Arabidopsis thaliana and Antirrhinum majus have greatly improved our understanding of the molecular mechanisms driving the diversity in floral development. The class B genes, which belong to the MADS-box gene family, are important regulators of the development of petals and stamens in(More)
In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths(More)
The class B floral homeotic genes from the higher eudicot model systems Arabidopsis and Antirrhinum are involved in specifying the identity of petals and stamens during flower development. These genes exist in two different types termed DEF- and GLO-like genes. The proteins encoded by the class B genes are stable and functional in the cell only as(More)
The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to(More)
Garden asparagus (Asparagus officinalis L.) is an economically important plant. This species is dioecious, and male plants are considered to be more desirable than females due to their higher yields. To reduce the time required for asparagus breeding, molecular marker techniques have been employed to identify sex-linked DNA markers. In the present study, we(More)
Mitochondrial DNA (mtDNA) was isolated from young green leaves of rice plants. DNA fragments were cloned into lambda DNA, and clones that hybridized to mitochondrial genes from other plants were selected. Distal restriction fragments of these clones were used as probes for the selection of overlapping clones. A genetic map was finally created from the(More)
The morphological transition of the first whorl of tepals into sepals occurs frequently during the diversification of angiosperms. Such transitions may play important roles in pollination modes. The B class genes, APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis thaliana and GLOBOSA (GLO) and DEFICIENS (DEF) in Antirrhinum majus, are required for the(More)
Plant MADS-box genes encode transcriptional regulators that are critical for a number of developmental processes, such as the establishment of floral organ identity, flowering time, and fruit development. It appears that the MADS-box gene family has undergone considerable gene duplication and divergence within various angiosperm lineages. SUPPRESSOR OF(More)
The transfer of fragments of DNA from chloroplast genomes to mitochondrial genomes is considered to be a general phenomenon in higher plants. In the present study, Southern hybridization, together with amplification by PCR and DNA sequencing techniques, was used to examine the regions homologous to chloroplast rps19 in the mitochondrial genomes of several(More)