Akira Hatanaka

Learn More
Tumor cell plasticity contributes to functional and morphologic heterogeneity. To uncover the underlying mechanisms of this plasticity, we examined glioma stem-like cells (GSC) where we found that the biologic interconversion between GSCs and differentiated non-GSCs is functionally plastic and accompanied by gain or loss of polycomb repressive complex 2(More)
Coarse grain reconfigurable arrays (CGRAs) have been drawing attention due to its programmability and performance. Compilation onto CGRAs is still an open problem. Several groups have proposed algorithms that software pipeline loops onto CGRAs. In this paper, we present an efficient modulo scheduling algorithm for a CGRA template. The novelties of the(More)
Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and(More)
Targeting self-renewal is an important goal in cancer therapy and recent studies have focused on Notch signalling in the maintenance of stemness of glioma stem cells (GSCs). Understanding cancer-specific Notch regulation would improve specificity of targeting this pathway. In this study, we find that Notch1 activation in GSCs specifically induces expression(More)
In this paper we propose a template of architectures that comprise of multiple autonomous processors interconnected via FIFO links. We extend conventional list scheduling algorithm to schedule applications on the proposed distributed architecture template. We explain how a graph representation of an architecture can be used to route operands and how edge(More)
LATS2, a pivotal Ser/Thr kinase of the Hippo pathway, plays important roles in many biological processes. LATS2 also function in Hippo-independent pathway, including mitosis, DNA damage response and epithelial to mesenchymal transition. However, the physiological relevance and molecular basis of these LATS2 functions remain obscure. To understand novel(More)
Tumor cell plasticity contributes to functional and morphologic heterogeneity. To uncover the underlying mechanisms of this plasticity, we examined glioma stem-like cells (GSC) where we found that the biologic interconversion between GSCs and differentiated non-GSCs is functionally plastic and accompanied by gain or loss of polycomb repressive complex 2(More)
  • 1