Learn More
The YAP1 gene of Saccharomyces cerevisiae encodes a bZIP-containing transcription factor that is essential for the normal response of cells to oxidative stress. Under stress conditions, the activity of yAP-1 is increased, leading to the induced expression of a number of target genes encoding protective enzymes or molecules. We have examined the mechanism of(More)
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates(More)
Loop-mediated isothermal amplification (LAMP), a novel gene amplification method, enables the synthesis of larger amounts of both DNA and a visible byproduct--namely, magnesium pyrophosphate--without thermal cycling. A positive reaction is indicated by the turbidity of the reaction solution or the color change after adding an intercalating dye to the(More)
Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic(More)
Both genomic and complementary DNA clones encoding poliovirus receptors were isolated from genomic and complementary DNA libraries prepared from HeLa S3 cells, respectively. Nucleotide sequence analysis of these cloned DNAs revealed that the poliovirus receptor gene is approximately 20 kb long and contains seven introns in the coding region, and that at(More)
Poliovirus receptor (PVR) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily. Although MPH was initially reported as the mouse homolog of human PVR, recent data strongly suggest that MPH is the mouse homolog of human PRR2, a PVR-related gene 2 product, and not that of human PVR. Thus MPH is renamed mPRR2 in this study.(More)
A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does(More)
BACKGROUND The yAP-1 transcription factor is crucial for the oxidative stress response of the budding yeast Saccharomyces cerevisiae; its activity is induced in response to oxidative stress, and as a consequence the expression of a number of target genes is enhanced. We have shown previously that yAP-1 is mainly found in the cytoplasm, but that upon the(More)
In the human central nervous system, susceptibility to poliovirus (PV) infection is largely confined to a specific subpopulation of neuronal cells. PV tropism is likely to be determined by cell-external components such as the PV receptor CD155, as well as cell-internal constraints such as the availability of a suitable microenvironment for virus(More)
Yap1p, a crucial transcription factor in the oxidative stress response of Saccharomyces cerevisiae, is transported in and out of the nucleus under nonstress conditions. The nuclear export step is specifically inhibited by H(2)O(2) or the thiol oxidant diamide, resulting in Yap1p nuclear accumulation and induction of transcription of its target genes. Here(More)