Akil C. Narayan

  • Citations Per Year
Learn More
We observe that polynomial measure modifications for families of univariate orthogonal polynomials imply sparse connection coefficient relations. We therefore propose connecting L2 expansion coefficients between a polynomial family and a modified family by a sparse transformation. Accuracy and conditioning of the connection and its inverse are explored. The(More)
We formulate and derive a generalization of an orthogonal rationalfunction basis for spectral expansions over the infinite or semi-infinite interval. The original functions, first presented by Wiener, are a mapping and weighting of the Fourier basis to the infinite interval. By identifying the Fourier series as a biorthogonal composition of Jacobi(More)
  • 1