Akihiro Iwabu

Learn More
Myosin-based cell contractile force is considered to be a critical process in cell motility. However, for epidermal growth factor (EGF)-induced fibroblast migration, molecular links between EGF receptor (EGFR) activation and force generation have not been clarified. Herein, we demonstrate that EGF stimulation increases myosin light chain (MLC)(More)
MOTIVATION Signal transduction cascades governing cell functional responses to stimulatory cues play crucial roles in cell regulatory systems and represent promising therapeutic targets for complex human diseases. however, mathematical analysis of how cell responses are governed by signaling activities is challenging due to their multivariate and non-linear(More)
Computational models of cell signaling networks typically are aimed at capturing dynamics of molecular components to derive quantitative insights from prior experimental data, and to make predictions concerning altered dynamics under different conditions. However, signaling network models have rarely been used to predict how cell phenotypic behaviors result(More)
Cell motility is actuated by a host of intracellular signaling cascades that result in movement of the cell in one direction, even without an external gradient. Phospholipase C-gamma (PLCgamma) has been shown to be important for growth factor-induced lamellipodial protrusion at the front of the cell while Cdc42 has been implicated in both filopodium(More)
Cell motility is now recognized as central to many biological processes. Growth factors, such as those that activate the epidermal growth factor receptor (EGFR), drive biochemically and biologically distinct subsets of migration critical for (neo)organogenesis and tumor invasion. Thus, modulation of these events requires an understanding of the controls of(More)
  • 1