Akihiro Hattori

Learn More
Studying cell functions for cellomics studies often requires the use of purified individual cells from mixtures of various kinds of cells. We have developed a new non-destructive on-chip cell sorting system for single cell based cultivation, by exploiting the advantage of microfluidics and electrostatic force. The system consists of the following two parts:(More)
We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing(More)
An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF) and fluorescent (FL) images at 200 frames per(More)
Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation(More)
2R-␥-Tocotrienol (␥-T3) is currently receiving attention because it has beneficial effects not observed with ␣-tocopherol. To achieve the effective delivery of ␥-T3, we synthesized three kinds of ester derivatives of ␥-T3 and evaluated their use as hydrophilic prodrugs for ␥-T3 in vitro and in vivo. 2R-␥-Tocotrienyl N,N-dimethylamino-acetate hydrochloride(More)
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting(More)
A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the(More)
We have demonstrated the efficacy of a microfluidic medium exchange method for single cells using passive centrifugal force of a rotating microfluidic-chip based platform. At the boundary of two laminar flows at the gathering area of two microfluidic pathways in a Y-shape, the cells were successfully transported from one laminar flow to the other, without(More)
BACKGROUNDS Conventional in vitro approach using human ether-a-go-go related gene (hERG) assay has been considered worldwide as the first screening assay for cardiac repolarization safety. However, it does not always oredict the potential QT prolongation risk or pro-arrhythmic risk correctly. For adaptable preclinical strategiesto evaluate global cardiac(More)
  • 1