Learn More
S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin(More)
Thrombo-occlusive cerebrovascular disease resulting in stroke and permanent neuronal loss is an important cause of morbidity and mortality. Because of the unique properties of cerebral vasculature and the limited reparative capability of neuronal tissue, it has been difficult to devise effective neuroprotective therapies in cerebral ischemia. Our results(More)
The receptor for advanced glycation end products (RAGE), a multi-ligand member of the immunoglobulin superfamily of cell surface molecules, interacts with distinct molecules implicated in homeostasis, development and inflammation, and certain diseases such as diabetes and Alzheimer's disease. Engagement of RAGE by a ligand triggers activation of key cell(More)
The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell(More)
Acute inflammation in the poststroke period exacerbates neuronal damage and stimulates reparative mechanisms, including neurogenesis. However, only a small fraction of neural stem/progenitor cells survives. In this report, by using a highly reproducible model of cortical infarction in SCID mice, we examined the effects of immunodeficiency on reduction of(More)
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the(More)
Increasing evidence points to accelerated neurogenesis after stroke, and support of such endogenous neurogenesis has been shown to improve stroke outcome in experimental animal models. The present study analyses post-stroke cerebral cortex after cardiogenic embolism in autoptic human brain. Induction of nestin- and musashi-1-positive cells, potential neural(More)
Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine(More)
Brain vascular pericytes (PCs) are a key component of the blood-brain barrier (BBB)/neurovascular unit, along with neural and endothelial cells. Besides their crucial role in maintaining the BBB, increasing evidence shows that PCs have multipotential stem cell activity. However, their multipotency has not been considered in the pathological brain, such as(More)
It is well established that leucine-rich repeat (LRR) proteins such as connectin, slit, chaoptin, and Toll have pivotal roles in neuronal development in Drosophila as cell adhesion molecules. However, to date, little information concerning mammalian LRR proteins has been reported. In the present study, we sought LRR proteins of the mouse brain, based on the(More)