Akihiko Shinya

Learn More
We reveal experimentally waveguiding characteristics and group-velocity dispersion of line defects in photonic crystal slabs as a function of defect widths. The defects have waveguiding modes with two types of cutoff within the photonic band gap. Interference measurements show that they exhibit extraordinarily large group dispersion, and we found(More)
We demonstrate extremely low-power all-optical bistability by utilizing silicon photonic crystal nanocavities, based on the plasma effect of carriers generated by two-photon absorption. Owing to the high quality factor and the small volume of the nanocavities, the photon density inside the cavity becomes extremely high, which leads to a large reduction in(More)
We have developed a wavelength-scale embedded active-region photonic-crystal laser using lateral p-i-n structure. Zn diffusion and Si ion implantation are used for p- and n-type doping. Room-temperature continuous-wave lasing behavior is clearly observed from the injection current dependence of the output power, 3dB-bandwidth of the peak, and lasing(More)
We have demonstrated all-optical bistable switching operation of resonant-tunnelling devices with ultra-small high-Q Si photonic-crystal nanocavities. Due to their high Q/V ratio, the switching energy is extremely small in comparison with that of conventional devices using the same optical nonlinear mechanism. We also show that they exhibit(More)
The design, fabrication, and measurement of photonic-band-gap (PBG) waveguides, resonators and their coupled elements in two-dimensional photonic crystal (PhC) slabs have been investigated. We have studied various loss mechanisms in PBG waveguides and have achieved a very low propagation loss (~1 dB/mm). For these waveguides, we have observed a large group(More)
Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of(More)
A low operating energy is needed for nanocavity lasers designed for on-chip photonic network applications. On-chip nanocavity lasers must be driven by current because they act as light sources driven by electronic circuits. Here, we report the high-speed direct modulation of a lambda-scale embedded active region photonic-crystal (LEAP) laser that holds(More)
We demonstrate all-optical bit memory operation with photonic crystal (PhC) nanocavities based on an InGaAsP substrate with a band gap at a wavelength of about 1.3 microm. The optical bistability is based on a refractive index modulation caused by carrier-plasma dispersion. The operating energy required for switching is only 30 fJ, and the minimum optical(More)
This article overviews our recent studies of ultrahigh-Q and ultrasmall photonic-crystal cavities, and their applications to nonlinear optical processing and novel adiabatic control of light. First, we show our latest achievements of ultrahigh-Q photonic-crystal nanocavities, and present extreme slow-light demonstration. Next, we show all-optical bistable(More)