Learn More
The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel many species of swimming bacteria. The rotor is a set of rings up to 45 nm in diameter in the cytoplasmic membrane; the stator contains about ten torque-generating units anchored to the cell wall at the perimeter of the rotor. The free-energy source(More)
We have developed a technique that allows mechanical and ligand-binding events in a single myosin molecule to be monitored simultaneously. We describe how steps in the ATPase reaction are temporally related to mechanical events at the single molecule level. The results show that the force generation does not always coincide with the release of bound(More)
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the(More)
The torque-speed relationship of the Na(+)-driven flagellar motor of Vibrio alginolyticus was investigated. The rotation rate of the motor was measured by following the position of a bead, attached to a flagellar filament, using optical nanometry. In the presence of 50mM NaCl, the generated torque was relatively constant ( approximately 3800pNnm) at lower(More)
The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na(+)-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in(More)
The bacterial flagellar motor is a rotary motor driven by the electrochemical potentials of specific ions across the cell membrane. Direct interactions between the rotor protein FliG and the stator protein MotA are thought to generate the rotational torque. Here, we used total internal reflection fluorescent microscopy to observe the localization of green(More)
PomA, a homolog of MotA in the H+-driven flagellar motor, is an essential component for torque generation in the Na+-driven flagellar motor. Previous studies suggested that two charged residues, R90 and E98, which are in the single cytoplasmic loop of MotA, are directly involved in this process. These residues are conserved in PomA of Vibrio alginolyticus(More)
The bacterial flagellar motor is driven by the electrochemical potential of specific ions, H(+) or Na(+). The motor consists of a rotor and stator, and their interaction generates rotation. The stator, which is composed of PomA and PomB in the Na(+) motor of Vibrio alginolyticus, is thought to be a torque generator converting the energy of ion flux into(More)
An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and(More)