Aki Nikolaidis

Learn More
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if(More)
Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical(More)
Procedural learning is the process of skill acquisition that is regulated by the basal ganglia, and this learning becomes automated over time through cortico-striatal and cortico-cortical connectivity. In the current study, we use a common machine learning regression technique to investigate how fMRI network connectivity in the subcortical and motor(More)
BACKGROUND The clinical success of large class II resin-modified glass-ionomer cement/composite resin (RMGIC/CR) 'open-sandwich' restorations in permanent or primary molars may be influenced by certain bonding parameters. AIM To examine in vitro the effect of placing/curing mode on the RMGIC/CR bond strength. DESIGN Two restoratives, a CR (Z250), a(More)
Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades of research have revealed that general intelligence is correlated with two brain-based biomarkers: the concentration of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy (MRS) and total brain volume(More)
Moving from group level to individual level functional parcellation maps is a critical step for developing a rich understanding of the links between individual variation in functional network architecture and cognitive and clinical phenotypes. Still, the identification of functional units in the brain based on intrinsic functional connectivity and its(More)
A wealth of neuroscience evidence demonstrates that aerobic fitness enhances structural brain plasticity, promoting the development of gray matter volume and maintenance of white matter integrity within networks for executive function, attention, learning, and memory. However, the role of aerobic fitness in shaping the functional brain connectome remains to(More)
  • 1