Akhmadjon 6 Irmukhamedov

Learn More
Peripheral vascular resistance is increased in essential hypertension. This involves structural changes of resistance arteries and stiffening of the arterial wall, including remodeling of the extracellular matrix. We hypothesized that biopsies of the human parietal pericardium, obtained during coronary artery bypass grafting or cardiac valve replacement(More)
Studies on the value of culture-independent molecular identification of bacteria in cardiac valves are mostly restricted to comparing agreement of identification to what is obtained by culture to the number of identified bacteria in culture-negative cases. However, evaluation of the usefulness of direct molecular identification should also address(More)
OBJECTIVES Aortic valve stenosis (AS) causes cardiac fibrosis and left ventricular hypertrophy, and over time heart failure can occur. To date, a reliable marker to predict progression of AS or the development of heart failure is still lacking. In this study, we addressed the hypothesis that fibulin-1 levels reflect myocardial fibrosis. METHODS Patients(More)
BACKGROUND AND PURPOSE We tested the hypothesis that in resistance arteries from cardiovascular disease (CVD) patients, effects of an endothelium-dependent vasodilator depend on the contractile stimulus. EXPERIMENTAL APPROACH Arteries dissected from parietal pericardium of cardiothoracic surgery patients were studied by myography and imaging techniques.(More)
OBJECTIVES We hypothesized that arterial stiffness is associated with changes in the arterial protein profile, particularly of extracellular matrix components. We aimed at determining differentially expressed proteins by quantitative proteome analysis in arterial tissue from patients with different degrees of arterial stiffness. APPROACH AND RESULTS(More)
AIM Obesity and especially hypertrophy of epicardial adipose tissue accelerate coronary atherogenesis. We aimed at comparing levels of inflammatory and atherogenic hormones from adipose tissue in the pericardial fluid and circulation of cardiovascular disease patients. METHODS AND RESULTS Venous plasma (P) and pericardial fluid (PF) were obtained from(More)
The impact of disease related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared to frequently used rodent mesenteric arteries. We hypothesized that the(More)
  • 1