Learn More
Astrocytes are electrically nonexcitable cells that display increases in cytosolic calcium ion (Ca²+) in response to various neurotransmitters and neuromodulators. However, the physiological role of astrocytic Ca²+ signaling remains controversial. We show here that astrocytic Ca²+ signaling ex vivo and in vivo stimulated the Na+,K+-ATPase (Na+- and(More)
SEA0400 is a potent and selective Na(+)/Ca(2+) exchanger (NCX) inhibitor. We evaluated the inhibitory effects of SEA0400 on Na(+)(i)-dependent (45)Ca(2+) uptake and whole-cell Na(+)/Ca(2+) exchange currents in NCX-transfected fibroblasts. SEA0400 preferentially inhibited (45)Ca(2+) uptake by NCX1 compared with inhibitions by NCX2, NCX3, and NCKX2. SEA0400(More)
The role of the Na+-Ca2+ exchanger as a major determinant of cell Ca2+ is well defined in cardiac tissue, and there has been much effort to develop specific inhibitors of the exchanger. We use a novel system to test the specificity of two putative specific inhibitors, KB-R7943 and SEA0400. The drugs are applied to electrically stimulated heart tubes from(More)
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to decrease ischemic neuronal damage and increase IL-6 secretion in rats. However, the mechanisms underlying neuroprotection are still to be fully elucidated. The present study was designed to investigate the role played by PACAP and IL-6 in mediating neuroprotection after ischemia(More)
Coadministration of atypical antipsychotics and selective serotonin reuptake inhibitors (SSRIs) enhances the release of monoamines such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the prefrontal cortex. To clarify the role of DA-D2/3 receptors in the combination effect, we examined the effects of coadministration of the selective DA-D2/3(More)
This study examines the effects of serotonin (5-HT)1A receptor ligands on the in vivo release of 5-HT and dopamine (DA) in the prefrontal cortex of mice. Oral MKC-242 and 8-OH-DPAT, selective 5-HT1A receptor agonists, decreased cortical 5-HT release at low and high doses, while the receptor agonists increased cortical DA release only at a high dose. Local(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with pleiotropic functions. We report here that PACAP-deficient (PACAP-/-) mice showed increased immobility in a forced swimming test, which was reduced by the antidepressant desipramine, to a similar extent as in wild-type mice. The atypical antipsychotic risperidone and the(More)
Most atypical antipsychotic drugs increase acetylcholine release in the prefrontal cortex, but the detailed mechanism is still unknown. The present study examined the role of serotonin (5-HT)1A receptors in risperidone-induced increases in acetylcholine release in rat prefrontal cortex. Systemic administration of risperidone at doses of 1 and 2 mg/kg(More)