Akari Takayama

  • Citations Per Year
Learn More
We performed a spin- and angle-resolved photoemission spectroscopy of bismuth ultrathin film on Si(111) with various film thickness d. We found that the spin polarization of spin-split Rashba surface states near the Brillouin-zone boundary, which is high (0.7) at d = 40 BL (bilayers), is gradually reduced on decreasing d and almost vanishes at d = 8 BL.(More)
To realize a one-dimensional (1D) system with strong spin-orbit coupling is a big challenge in modern physics, since the electrons in such a system are predicted to exhibit exotic properties unexpected from the 2D or 3D counterparts, while it was difficult to realize genuine physical properties inherent to the 1D system. We demonstrate the first(More)
We report the direct evidence for superconductivity in Ca-intercalated bilayer graphene C6CaC6, which is regarded as the thinnest limit of Ca-intercalated graphite. We performed the electrical transport measurements with the in situ 4-point-probe method in ultrahigh vacuum under zero- or nonzero-magnetic field for pristine bilayer graphene, Li-intercalated(More)
We have performed spin- and angle-resolved photoemission spectroscopy of Bi(2)Te(3) and present the first direct evidence for the existence of the out-of-plane spin component on the surface state of a topological insulator. We found that the magnitude of the out-of-plane spin polarization on a hexagonally deformed Fermi surface of Bi(2)Te(3) reaches(More)
It is well known that a topologically protected gapless state appears at an interface between a topological insulator and an ordinary insulator; however, the physics of the interface between a topological insulator and a metal has largely been left unexplored. Here we report a novel phenomenon termed topological proximity effect, which occurs between a(More)
We have performed high-resolution spin- and angle-resolved photoemission spectroscopy of bismuth thin film on Si(111) to investigate the spin structure of surface states. Unlike the conventional Rashba splitting, the magnitude of the in-plane spin polarization is asymmetric between the two elongated surface hole pockets across the zone center. Moreover, we(More)
We performed systematic spin- and angle-resolved photoemission spectroscopy of TlBi(S(1-x)Se(x))(2) which undergoes a topological phase transition at x ~ 0.5. In TlBiSe(2) (x = 1.0), we revealed a helical spin texture of Dirac-cone surface states with an intrinsic in-plane spin polarization of ~0.8. The spin polarization still survives in the gapped surface(More)
The topology of pure Bi is controversial because of its very small (∼10  meV) band gap. Here we perform high-resolution angle-resolved photoelectron spectroscopy measurements systematically on 14-202 bilayer Bi films. Using high-quality films, we succeed in observing quantized bulk bands with energy separations down to ∼10  meV. Detailed analyses on the(More)
It was observed that the vacuum magnetic island produced by an external error magnetic field in the large helical device shrank in the presence of plasma. This was evidenced by the disappearance of flat regions in the electron temperature profile obtained by Thomson scattering. This island behavior depended on the magnetic configuration in which the plasmas(More)
Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that(More)