Aju Antony

Learn More
Human granulocyte-macrophage colony stimulating factor (hGMCSF) is an important therapeutic cytokine. As a novel attempt to purify hGMCSF protein, without the enzymatic cleavage of the affinity tag, an intein-based system was used. The gene was fused by overlap extension PCR to the intein sequence at its N-terminal in pTYB11 vector. The hGMCSF was expressed(More)
One of the reasons for limited heterologous protein secretion in Pichia pastoris is the suboptimal folding conditions inside the cell. The Hsp70 and Hsp40 chaperone families in the cytoplasm or the ER regulate the folding and secretion of heterologous proteins. Here, we have studied the effect of chaperones Ydj1p, Ssa1p, Sec63p and Kar2p on the secretory(More)
Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain, isolated from a bacterial keratitis patient in southern India.
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector,(More)
Sequence type 22 (ST22) and ST672 are the two major emerging clones of community-acquired methicillin-resistant Staphylococcus aureus in India. ST672 strains were found to cause severe ocular infections. We report the draft genome sequences of two emerging strains of methicillin-resistant S. aureus, AMRF1 (ST22) and AMRF2 (ST672), isolated from patients(More)
Human granulocyte-macrophage colony-stimulating factor (hGMCSF) is a proinflammatory cytokine and hematopoietic growth factor. Recombinant human granulocyte-macrophage colony-stimulating factor (rhGMCSF) serves as a biotherapeutic agent in bone marrow stimulations, vaccine development, gene therapy approaches, and stem cell mobilization. The objective of(More)
We report the draft genome sequence of a hyperthermophilic Methanocaldococcus villosus strain, KIN24-T80. The gene associated with its heavy flagellum formation was annotated in the 1.2-Mb draft genome sequence, and this strain may be a good model system to study the extensive functional role of flagella and their fast motor activity.
  • 1