Ajith Abraham

Learn More
Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. It has reportedly outperformed a few evolutionary algorithms (EAs) and other search heuristics like the particle swarm optimization (PSO) when tested over both benchmark and realworld problems. DE, however, is not completely free from(More)
Current intrusion detection systems (IDS) examine all data features to detect intrusion or misuse patterns. Some of the features may be redundant or contribute little (if anything) to the detection process. The purpose of this study is to identify important input features in building an IDS that is computationally efficient and effective. We investigated(More)
Differential evolution (DE) has emerged as one of the fast, robust, and efficient global search heuristics of current interest. This paper describes an application of DE to the automatic clustering of large unlabeled data sets. In contrast to most of the existing clustering techniques, the proposed algorithm requires no prior knowledge of the data to be(More)
Computational Grid (Grid Computing) is a new paradigm that will drive the computing arena in the new millennium. Unification of globally remote and diverse resources, coupled with the increasing computational needs for Grand Challenge Applications (GCA) and accelerated growth of the Internet and communication technology will further fuel the development of(More)
Since the beginning of the nineteenth century, a significant evolution in optimization theory has been noticed. Classical linear programming and traditional non-linear optimization techniques such as Lagrange’s Multiplier, Bellman’s principle and Pontyagrin’s principle were prevalent until this century. Unfortunately, these derivative based optimization(More)
In this paper we survey computational models for Grid scheduling problems and their resolution using heuristic and meta-heuristic approaches. Scheduling problems are at the heart of any Grid-like computational system. Different types of scheduling based on different criteria, such as static versus dynamic environment,multi-objectivity, adaptivity, etc., are(More)
The process of monitoring the events occurring in a computer system or network and analyzing them for sign of intrusions is known as intrusion detection system (IDS). This paper presents two hybrid approaches for modeling IDS. Decision trees (DT) and support vector machines (SVM) are combined as a hierarchical hybrid intelligent system model (DT–SVM) and an(More)
Time-series forecasting is an important research and application area. Much effort has been devoted over the past several decades to develop and improve the time-series forecasting models. This paper introduces a new time-series forecasting model based on the flexible neural tree (FNT). The FNT model is generated initially as a flexible multi-layer(More)
In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the(More)
Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks, in these days, require fast and accurate partitioning of huge datasets, which may come with a variety of attributes or(More)