Learn More
Low voltage-activated (T-type) calcium currents are observed in many central and peripheral neurons and display distinct physiological and functional properties. Using in situ hybridization, we have localized central and peripheral nervous system expression of three transcripts (alpha1G, alpha1H, and alpha1I) of the T-type calcium channel family (CaVT).(More)
Low voltage-activated Ca2+ channels play important roles in pacing neuronal firing and producing network oscillations, such as those that occur during sleep and epilepsy. Here we describe the cloning and expression of the third member of the T-type family, alpha1I or CavT.3, from rat brain. Northern analysis indicated that it is predominantly expressed in(More)
The molecular diversity of voltage-activated calcium channels was established by studies showing that channels could be distinguished by their voltage-dependence, deactivation and single-channel conductance. Low-voltage-activated channels are called 'T' type because their currents are both transient (owing to fast inactivation) and tiny (owing to small(More)
Voltage-activated Ca2+ channels exist as multigene families that share common structural features. Different Ca2+ channels are distinguished by their electrophysiology and pharmacology and can be classified as either low or high voltage-activated channels. Six alpha1 subunit genes cloned previously code for high voltage-activated Ca2+ channels; therefore,(More)
Low voltage-activated T-type calcium channels are encoded by a family of at least three genes, with additional diversity created by alternative splicing. This study describes the cloning of the human brain alpha1G, which is a novel isoform, Ca(v)3.1c. Comparison of this sequence to genomic sequences deposited in the GenBank allowed us to identify the(More)
Inhibition of T-type Ca(2+) channels has been proposed to play a role in the therapeutic action of succinimide antiepileptic drugs. Despite the widespread acceptance of this hypothesis, recent studies using rat and cat neurons have failed to confirm inhibition of T-type currents at therapeutically relevant concentrations. The present study re-examines this(More)
INTRODUCTION Drug use in pregnancy is very common but may cause harm to the fetus. The teratogenic effect of a drug is partly dependent on the drug level in the fetal circulation, which is associated with the transport across the placenta. Many drugs are substrates of P-glycoprotein (P-gp), an efflux transporter that acts as a protective barrier for the(More)
Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies(More)
  • 1