Learn More
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation(More)
The ribosomal protein L11 binds to and suppresses the E3 ligase function of HDM2, thus activating p53. Despite being abundant as a component of the 60S large ribosomal subunit, L11 does not induce p53 under normal growth conditions. In search of mechanisms controlling L11-HDM2 interaction, we found that the induction of p53 under growth inhibitory(More)
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein(More)
The importance of coordinating cell growth with proliferation has been recognized for a long time. The molecular basis of this relationship, however, is poorly understood. Here we show that the ribosomal protein L23 interacts with HDM2. The interaction involves the central acidic domain of HDM2 and an N-terminal domain of L23. L23 and L11, another(More)
How cells coordinate inhibition of growth and division during genotoxic events is fundamental to our understanding of the origin of cancer. Despite increasing interest and extensive study, the mechanisms that link regulation of DNA synthesis and ribosomal biogenesis remain elusive. Recently, the tumor suppressor p14(ARF) (ARF) has been shown to interact(More)
It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and degradation via its E3 ligase activity. To study these functions physiologically, we generated mice bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 binding. Unexpectedly, homozygous mutant mice died before(More)
In vitro studies have shown that inhibition of ribosomal biogenesis can activate p53 through ribosomal protein (RP)-mediated suppression of Mdm2 E3 ligase activity. To study the physiological significance of the RP-Mdm2 interaction, we generated mice carrying a cancer-associated cysteine-to-phenylalanine substitution in the zinc finger of Mdm2 that(More)
PURPOSE The purpose is to understand the expression of ecto-5'-nucleotidase (eN), an adenosine producing enzyme with potential roles in angiogenesis, growth, and immunosuppression, in estrogen receptor (ER)-negative and -positive breast cancer. EXPERIMENTAL DESIGN We investigated the regulation of eN expression at the mRNA and protein levels by alpha in a(More)
The p53-inhibitory function of the oncoprotein MDM2 is regulated by a number of MDM2-binding proteins, including ARF and ribosomal proteins L5, L11, and L23, which bind the central acidic domain of MDM2 and inhibit its E3 ubiquitin ligase activity. Various human cancer-associated MDM2 alterations targeting the central acidic domain have been reported, yet(More)
SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and may be dependent upon the(More)