Aisling Dunne

Learn More
Interleukin 1β (IL-1β) is an important inflammatory mediator of type 2 diabetes. Here we show that oligomers of islet amyloid polypeptide (IAPP), a protein that forms amyloid deposits in the pancreas during type 2 diabetes, triggered the NLRP3 inflammasome and generated mature IL-1β. One therapy for type 2 diabetes, glyburide, suppressed IAPP-mediated IL-1β(More)
Toll-like receptors (TLRs) and members of their signaling pathway are important in the initiation of the innate immune response to a wide variety of pathogens. The adaptor protein Mal (also known as TIRAP), encoded by TIRAP (MIM 606252), mediates downstream signaling of TLR2 and TLR4 (refs. 4-6). We report a case-control study of 6,106 individuals from the(More)
The Toll-interleukin 1 receptor (TIR) superfamily, defined by the presence of an intracellular TIR domain, initiates innate immunity through activation of the transcription factor NF-kappa B, leading to the production of proinflammatory cytokines. ST2 is a member of the TIR family that does not activate NF-kappa B and has been suggested as an important(More)
The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling(More)
It is now well established that Toll-like receptors (TLRs) act as primary sensors of microbial compounds. Details of the molecular mechanisms governing TLR responses are emerging steadily and our understanding of the signaling pathways activated these receptors has improved greatly over the last few years. Differences in adaptor usage, cellular localisation(More)
In this study we have identified members of the Toll-like receptor (TLR) family (namely, TLRs 4, 6, 8, and 9) as proteins to which the intracellular protein tyrosine kinase, Bruton's tyrosine kinase (Btk), binds. Detailed analysis of the interaction between Btk and TLR8 demonstrates that the presence of both Box 2 and 3 motifs in the Toll/interleukin-1(More)
Members of the Toll-like receptor (TLR) family are essential players in activating the host innate immune response against infectious microorganisms. All TLRs signal through Toll/interleukin 1 receptor domain-containing adapter proteins. MyD88 adapter-like (Mal) is one such adapter that specifically is involved in TLR2 and TLR4 signaling. When overexpressed(More)
The recognition of pathogen-derived molecules by the innate immune system is mediated by a number of receptors, including members of the TLR (Toll-like receptor), RLH [RIG (retinoic acid-inducible gene)-like helicase] and the NLR (NOD-like receptor) families. NLRs in particular are also involved in the recognition of host-derived 'danger'-associated(More)
Toll-like receptors (TLRs) play a crucial role in innate immune responses to infection. Binding of agonists to TLRs promotes maturation of antigen presenting cells, such as dendritic cells, which in turn directs the induction of adaptive immune responses. For this reason TLR agonists are being exploited as vaccine adjuvants for infectious disease or cancer(More)
Toll-like receptors (TLRs)-2 and -4 are important proteins in innate immunity, recognizing microbial products and eliciting host defense responses. Both use the adapter proteins MyD88 and MyD88 adapter-like (Mal) to activate signaling pathways. Here we report that Mal but not MyD88 interacts with caspase-1, the enzyme that processes the precursors of the(More)