Aishwarya Ravindran

Learn More
Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the(More)
Interleukin-8 (IL-8 or CXCL8) plays a critical role in orchestrating the immune response by binding and activating the receptor CXCR1 that belongs to the GPCR class. IL-8 exists as both monomers and dimers, and both bind CXCR1 but with differential affinities. It is well established that the monomer is the high-affinity ligand and that the interactions(More)
The CXCL1/CXCR2 axis plays a crucial role in recruiting neutrophils in response to microbial infection and tissue injury, and dysfunction in this process has been implicated in various inflammatory diseases. Chemokines exist as monomers and dimers, and compelling evidence now exists that both forms regulate in vivo function. Therefore, knowledge of the(More)
CXCL8/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation(More)
  • 1