Aisha Karim Khan

Learn More
Aging is a process that presents various alterations in physiological, behavioral and neurochemical processes. It causes impairment of CNS functions which lead to changes in memory, cognition and other behavioral performances. Reports have shown that aging causes neurochemical alterations in various physiological functions. The aim of the present study was(More)
Following the success obtained with transplantation of fresh human islets under steroid-free immunosuppression, this trial evaluated the transplantation of islets that had undergone a period of in vitro culture and the potential of tumor necrosis factor (TNF-alpha) blockade to improve islet engraftment. Subjects included 16 patients with type 1 diabetes(More)
While regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D). Cadaveric pancreas specimens were collected from the head,(More)
BACKGROUND Endothelial dysfunction, characterized by diminished endothelial progenitor cell (EPC) function and flow-mediated vasodilation (FMD), is a clinically significant feature of heart failure (HF). Mesenchymal stem cells (MSCs), which have pro-angiogenic properties, have the potential to restore endothelial function. Accordingly, we tested the(More)
OBJECTIVE Long-segment injuries to large peripheral nerves present a challenge to surgeons because insufficient donor tissue limits repair. Multiple supplemental approaches have been investigated, including the use of Schwann cells (SCs). The authors present the first 2 cases using autologous SCs to supplement a peripheral nerve graft repair in humans with(More)
The rationale for implantation of autologous human Schwann cells (SCs) in persons with subacute spinal cord injury (SCI) is based on evidence that transplanted SCs are neuroprotective, support local axonal plasticity, and are capable of myelinating axons. A Phase I clinical trial was conducted to evaluate the safety of autologous human SC transplantation(More)
BACKGROUND Mesenchymal stem cells (MSC) improve alveolar and vascular structures in experimental models of bronchopulmonary dysplasia (BPD). Female MSC secrete more anti-inflammatory and pro-angiogenic factors as compared to male MSC. Whether the therapeutic efficacy of MSC in attenuating lung injury in an experimental model of BPD is influenced by the sex(More)
  • 1