Aino Tietäväinen

Learn More
BACKGROUND Use of the effective dose in diagnostic radiology permits the radiation exposure of diverse diagnostic procedures to be quantified. Fundamental knowledge of patient doses enhances the implementation of the "as low as reasonably achievable" (ALARA) principle. PURPOSE To provide comparative information on pediatric examination protocols and(More)
We develop a method to quantify sleepiness. Sleepiness is a major risk factor in traffic and occupational accidents, but lack of convenient tests precludes monitoring impending sleepiness. Posturographic balance testing could address this need because sleepiness increases postural sway. It is, however, unclear how sleepiness influences balance control. Our(More)
Although sleepiness is a major risk factor in traffic and occupational accidents, convenient, quantitative, and commercial sleepiness testing is lacking. The issue is relevant to policymakers concerned with legislation for, and surveillance of, traffic- and occupational safety. This work suggested and examined posturographic sleepiness testing for(More)
Sedative drugs decrease postural steadiness and increase the risk of injury from falls and accidents. The recovery rate is individual, making it hard to predict the patient's steadiness and hence safe discharge time. 103 outpatients sedated with midazolam and fentanyl were measured posturographically, before (PRE) and after (POST) endoscopy. The ability of(More)
Although reduced sleep often underlies traffic and occupational accidents, convenient sleepiness testing is lacking. We show that posturographic balance testing addresses this issue, because balance testing predicts hours of wakefulness, which could facilitate sleepiness testing. Here, we equate balance scores from separate trials, blinded to the(More)
A previous posturographic force platform study verified that human balance deteriorates as a function of time awake (TA). It found that TA can be estimated with +/-2.5 h accuracy using 30 s trial length. For a fast, reliable and convenient sleepiness monitor even better TA estimation accuracy and shorter trial length is needed. We continued this quest by(More)
A field-usable sleepiness tester could reduce sleepiness related accidents. 15 subjects' postural steadiness was measured with a Nintendo(®) Wii Fit balance board every hour for 24 h. Body sway was quantified with complexity index, CI, and the correlation between CI and alertness predicted by a three-process model of sleepiness was calculated. The CI group(More)
The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no(More)
Postural steadiness may be quantified using posturographic sway measures. These measures are commonly used to differentiate between a person's baseline balance and balance related to some physiological condition. However, the difference in sway scores between the two conditions may be difficult to detect due to large inter-subject variation. We compared(More)
  • 1