Learn More
Pleiotropy, the ability of a single mutant gene to cause multiple mutant phenotypes, is a relatively common but poorly understood phenomenon in biology. Perhaps the greatest challenge in the analysis of pleiotropic genes is determining whether phenotypes associated with a mutation result from the loss of a single function or of multiple functions encoded by(More)
The SAGA complex of Saccharomyces cerevisiae is required for the transcription of many RNA polymerase II-dependent genes. Previous studies have demonstrated that SAGA possesses histone acetyltransferase activity, catalyzed by the SAGA component Gcn5. However, the transcription of many genes, although SAGA dependent, is Gcn5 independent, suggesting the(More)
Genome-wide RNA expression data provide a detailed view of an organism's biological state; hence, a dataset measuring expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish(More)
An in vivo expression system has been developed for controlling the transcription of individual genes in the mitochondrial genome of Saccharomyces cerevisiae. The bacteriophage T7 RNA polymerase (T7Pol), fused to the COXIV mitchondrial import peptide and expressed under the control of either the GAL1 or the ADH1 promoter, efficiently transcribes a target(More)
Sequence polymorphisms affect gene expression by perturbing the complex network of regulatory interactions. We propose a probabilistic method, called Geronemo, which directly aims to identify the mechanism by which genetic changes perturb the regulatory network. Geronemo automatically constructs a set of coregulated genes (modules), whose regulation can(More)
Gene expression ratios derived from spotted-glass microarray experiments have become invaluable to researchers by providing sensitive and comprehensive indicators of the molecular underpinnings of cell behaviors and states. However, several drawbacks to this form of data have been noted, including the inability to relate ratios to absolute expression levels(More)
Mutations selected as suppressors of Ty or solo delta insertion mutations in Saccharomyces cerevisiae have identified several genes, SPT3, SPT7, SPT8, and SPT20, that encode components of the SAGA complex. However, the mechanism by which SAGA activates transcription of specific RNA polymerase II-dependent genes is unknown. We have conducted a fine-structure(More)
Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically(More)
BACKGROUND Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method(More)
Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1,(More)