Learn More
AIMS Mesenchymal stem cells (MSCs) have been demonstrated to be protective in diabetic nephropathy (DN) by reducing albuminuria and attenuating glomerular injury. However, the mechanisms remain unclear. The aim of this study was to explore the effects of MSCs on oxidative stress in DN. MATERIALS/METHODS Streptozotocin-induced diabetic rats received no(More)
Group-selective molecularly imprinted polymers (MIPs) made from sulfonamides (SAs) using functional monomer methacrylic acid (MAA) were synthesized. The derived molecularly imprinted solid-phase extraction (MISPE) cartridges were developed for the purification and enrichment of aquatic products. The optimum template molecule and the ratio of the functional(More)
Two types of molecularly imprinted polymers (MIPs) for the simultaneous determination of six pyrethroid insecticides have been developed using deltamethrin (D-MIPs) and cypermethrin (C-MIPs) as template molecules. A comparison of the performance of D-MIPs, C-MIPs, and the corresponding non-imprinted polymers (NIPs) were conducted. Stronger group-selective(More)
PURPOSE To investigate whether mesenchymal stem cells (MSCs) could inhibit transforming growth factor beta (TGF-β) signalling pathway by paracrine action. METHODS Bone marrow-derived MSCs were transplanted to streptozotocin-induced diabetic rats via tail vein. MSC-conditioned media were used with a model of mesangial cell fibrosis induced by high glucose(More)
Proteinuria may contribute to progressive renal damage by inducing tubulointerstitial inflammation, fibrosis and tubular cell apoptosis, but the underlying mechanisms remain largely unknown. TRB3 is a kinase-like molecule that can modify cellular survival and interfere with signal transduction pathways. We seek to determine the role of TRB3 in renal tubular(More)
Group-selective molecularly imprinted polymers (MIPs) for amphenicol antibiotics, including chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA), were developed for the first time using TAP as the template molecule. The characteristics of the obtained MIPs were systematically evaluated by chromatographic methods and(More)
Thermally two-dimensional lattice graphene (GR) and biocompatibility chitosan (CS) act as a suitable support for the deposition of palladium nanoparticles (PdNPs). A novel hydrogen peroxide (H(2)O(2)) biosensor based on immobilization of hemoglobin (Hb) in thin film of CS containing GR and PdNPs was developed. The surface morphologies of a set of(More)
A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used,(More)
A concept based on a novel redox-biocompatible composite protein membrane fabrication, double enzyme membrane modification technique and antibody immobilization, was exploited to develop a highly sensitive amperometric enzyme immunosensor for detection of carcinoembryonic antigen (CEA). In this concept, a solution of bovine serum albumin (BSA) containing(More)
AIMS Fibrosis is the final disorder of most chronic kidney disease including diabetic nephropathy (DN), but the mechanisms are not fully understood. The present study aims to determine whether TRB3 participates in fibrogenesis in DN. METHODS Type1 diabetes was induced in male Wistar rats via intraperitoneal injection of streptozotocin (STZ). The(More)