Learn More
Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine(More)
Fas ligand (FasL/CD95L) is a transmembrane protein belonging to the tumor necrosis factor superfamily that can trigger apoptotic cell death following ligation to its receptor, Fas (CD95/APO-1). Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of antitumor immune effector cells-the "Fas counterattack."(More)
Listeria monocytogenes is a Gram-positive bacterium that can cause septicemia and meningitis. TLRs are central receptors of the innate immune system that drive inflammatory responses to invading microbes such as L. monocytogenes. Although intestinal epithelial cells (IECs) represent the initial point of entry used by L. monocytogenes for infection, the(More)
The p21-activated kinase 1 (Pak1) is a serine/threonine kinase whose activity is regulated by both Rho GTPases and AGC kinase family members. It plays a role in cytoskeletal remodeling and cell motility as well as cell proliferation, angiogenesis, tumorigenesis and metastasis. An involvement of Pak1 in renal cell carcinoma (RCC), which remains highly(More)
Oesophageal cancer is an aggressive tumour which responds poorly to both chemotherapy and radiation therapy and has a poor prognosis. Thus, a greater understanding of the biology of oesophageal cancer is needed in order to identify novel therapeutic targets. Among these targets p38 MAPK isoforms are becoming increasingly important for a variety of cellular(More)
The study of the role of Fas ligand (FasL/CD95L) in tumor immune evasion has been complicated by the discovery that FasL may trigger cytokine secretion and induce inflammation. Antisense suppression of FasL expression by colon tumor cells was used to investigate if a reduction in endogenously expressed FasL in tumors resulted in reduced tumor development(More)
BACKGROUND During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L) expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies(More)
Viral double-stranded RNA (dsRNA) is recognised by pathogen recognition receptors such as Toll-Like Receptor 3 (TLR3) and retinoic acid inducible gene-I (RIG-I), and results in cytokine and interferon production. Fas, a well characterised death receptor, has recently been shown to play a role in the inflammatory response. In this study we investigated the(More)
Tumor cells frequently exhibit de novo expression of Fas ligand (FasL/CD95L). Coupled with resistance to Fas-mediated apoptosis, FasL expression enables many cancers to deliver a pre-emptive strike or 'counterattack' against the immune system. New studies also indicate that FasL expression on tumor cells could confer a double advantage to these cells by(More)