Aiko Yoshida

Learn More
MDA5 is an essential intracellular sensor for several viruses, including picornaviruses, and elicits antiviral interferon (IFN) responses by recognizing viral dsRNAs. MDA5 has been implicated in autoimmunity. However, the mechanisms of how MDA5 contributes to autoimmunity remain unclear. Here we provide direct evidence that dysregulation of MDA5 caused(More)
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an(More)
In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how(More)
The dynamics of the cell membrane and submembrane structures are closely linked, facilitating various cellular activities. Although cell surface research and cortical actin studies have shown independent mechanisms for the cell membrane and the actin network, it has been difficult to obtain a comprehensive understanding of the dynamics of these structures(More)
Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β(More)
Using fast-scanning atomic force microscopy, we directly visualized the interaction of Escherichia coli RNA polymerase (RNAP) with DNA at the scan rate of 1-2 frames per second. The analyses showed that the RNAP can locate the promoter region not only by sliding but also by hopping and/or segmental transfer. Upon the addition of 0.05 mM NTPs to the stalled(More)
Since the inception of atomic force microscopy (AFM) in 1986, the value of this technology for exploring the structure and biophysical properties of a variety of biological samples has been increasingly recognized. AFM provides the opportunity to both image samples at nanometer resolution and also measure the forces on the surface of the sample. Here, we(More)
Together with lamellipodia and stress fibers, a dynamic network of actin filaments in the cell cortex plays a major role in the maintenance of cell morphology and motility. In contrast to lamellipodia, which have been well studied in various motile cells, the dynamics of actin filaments in the cell cortex have not yet been clarified due to a lack of proper(More)