Learn More
Photoactive yellow protein (PYP) is a eubacterial photoreceptor and a structural prototype of the PAS domain superfamily of receptor and regulatory proteins. We investigate the activation mechanism of PYP using time-resolved Fourier transform infrared (FTIR) spectroscopy. Our data provide structural, kinetic, and energetic evidence that the putative(More)
Photoactive yellow protein (PYP) is a photoreceptor containing a unique 4-hydroxycinnamic acid (pCA) chromophore. The trans to cis photoisomerization of this chromophore activates a photocycle involving first a short-lived red-shifted intermediate (pR), then a long-lived blue-shifted intermediate (pB), and finally recovery of the original receptor state(More)
Determination of quantum efficiencies of bacteriorhodopsin (bR) photoreactions is an essential step toward a full understanding of its light-driven proton-pumping mechanism. The bR molecules can be photoconverted into and from a K state, which is stable at 110 K. I measured the absorption spectra of pure bR, and the photoequilibrium states of bR and K(More)
Biological signal transduction starts with the activation of a receptor protein. Two central questions in signaling are the mechanism of activation by a stimulus and the nature and extent of the protein conformational changes involved. We report extensive evidence for the occurrence of large structural changes upon the light activation of photoactive yellow(More)
Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding(More)
Vibrational excitations of low frequency collective modes are essential for functionally important conformational transitions in proteins. Here we report the first direct measurement on the lifetime of vibrational excitations of the collective modes at 87 pm (115 cm(-1)) in bacteriorhodopsin, a transmembrane protein. The data show that these modes have(More)
Photoactive yellow proteins (PYP) are bacterial photoreceptors with a Per-Arnt-Sim (PAS) domain fold. We report the identification of six new PYPs, thus nearly doubling the size of this protein family. This extends the taxonomic diversity of PYP-containing bacteria from photosynthetic to nonphotosynthetic bacteria, from aquatic to soil-dwelling organisms,(More)
The absorbance changes that accompany the light-driven proton-pumping cycle of bacteriorhodopsin measured over a broad range of times, wavelengths, temperatures, and pH values have been globally fitted to the kinetic model K in equilibrium with L in equilibrium with X in equilibrium with M in equilibrium with N in equilibrium with O----bR. A remarkably good(More)
Pump-probe experiments in the infrared measure vibrational relaxation rates. Myoglobin, which is almost entirely alpha helix in secondary structure, has an unusually long, nonexponential excited state relaxation generated by optically pumping at the blue side ( 5. 85 microm) of the amide I band. The amino acid alanine and the predominantly beta sheet(More)
Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise(More)