Learn More
Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution(More)
Anurans are well known for their jumping abilities, making use of their strong hindlimbs. In contrast, the function of the forelimbs during take-off has rarely been studied. We measured the ground reaction forces exerted by forelimbs and hindlimbs during short jumps in the Dybowski's frog Rana dybowskii. Take-off occurred in two phases. Phase one (from the(More)
To attach reliably on various inclined rough surfaces, many insects have evolved both claws and adhesive pads on their feet. However, the interaction between these organs still remains unclear. Here we designed an artificial attachment device, which mimics the structure and function of claws and adhesive pads, and tested it on stiff spheres of different(More)
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome(More)
To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has(More)
Locusts (Locusta migratoria manilensis) are characterized by their strong flying and grasping ability. Research on the grasping mechanism and behaviour of locusts on sloping substrates plays an important role in elucidating the mechanics of hexapod locomotion. Data on the maximum angles of slope at which locusts can grasp stably (critical angles of(More)
The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal(More)
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough(More)
The corresponding author, Dr Pablo Perez Goodwyn, submitted this article [1] to Central European Journal of Biology (CEJB) shortly after submitting the article [2] to Journal of Bionic Engineering (JBE). JBE published it as a research article in June 2008, and in July 2008 the article was published as a communication in CEJB. Since there are significant(More)
We measured the force of free pulling water striders, using a hair attached to their backs and a 3D strain gauge force sensor. We showed the repeatability and accuracy of this method. The error of the method was estimated by comparing the projected angles of the force vector on each plane derived from the force data, with those angles derived from video(More)