Learn More
Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21(More)
AIMS It has become increasingly evident that the nigrostriatal degeneration associated with Parkinson's disease initiates at the level of the axonal terminals in the putamen, and this nigrostriatal terminal dystrophy is either caused or exacerbated by the presence of α-synuclein immunopositive neuronal inclusions. Therefore, strategies aimed at reducing(More)
Modeling Parkinson's disease remains a major challenge for preclinical researchers, as existing models fail to reliably recapitulate all of the classic features of the disease, namely, the progressive emergence of a bradykinetic motor syndrome with underlying nigrostriatal α-synuclein protein accumulation and nigrostriatal neurodegeneration. One limitation(More)
BACKGROUND Down syndrome (DS), caused by trisomy of human chromosome 21 (HSA21), is the most common genetic cause of mental retardation in humans. Among complex phenotypes, it displays a number of neural pathologies including smaller brain size, reduced numbers of neurons, reduced dendritic spine density and plasticity, and early Alzheimer-like(More)
Despite the widely held belief that Parkinson's disease is caused by both underlying genetics and exposure to environmental risk factors, it is still widely modelled in preclinical models using a single genetic or neurotoxic insult. This single-insult approach has resulted in a variety of models that are limited with respect to their aetiological,(More)
  • 1