Aidan Sims

Learn More
General Information SATEN 1 is an object-oriented web-based extraction and belief revision engine. It runs on any computer via a Java 1.1 enabled browser such as Netscape 4. SATEN performs belief revision based on the AGM approach (Alchourrón et al 85). The extraction and belief revision reasoning engines operate on a user specified ranking of information.(More)
Let X be a product system over a quasi-lattice ordered group. Under mild hypotheses, we associate to X a C *-algebra which is co-universal for injective Nica covariant Toeplitz representations of X which preserve the gauge coaction. Under appropriate amenability criteria, this co-universal C *-algebra coincides with the Cuntz-Nica-Pimsner algebra introduced(More)
We develop notions of a representation of a topological graph E and of a covariant representation of a topological graph E which do not require the machinery of C *-correspondences and Cuntz– Pimsner algebras. We show that the C *-algebra generated by a universal representation of E is isomorphic to the Toeplitz algebra of Katsura's topological-graph(More)
We show that if E is an equivalence of upper semicontinu-ous Fell bundles B and C over groupoids, then there is a linking bundle L(E) over the linking groupoid L such that the full cross-sectional algebra of L(E) contains those of B and C as complementary full corners, and likewise for reduced cross-sectional algebras. We show how our results generalise to(More)