Learn More
Wnt/β-catenin signaling is essential for stem cell regulation and tumorigenesis, but its molecular mechanisms are not fully understood. Here, we report that FoxM1 is a downstream component of Wnt signaling and is critical for β-catenin transcriptional function in tumor cells. Wnt3a increases the level and nuclear translocation of FoxM1, which binds directly(More)
Cancer stem cells may be responsible for tumor initiation and maintenance. The molecular mechanisms that control cancer stem cells are related to alterations in various signaling pathways, including the Wnt/β-catenin signaling pathway. The canonical Wnt/β-catenin signaling pathway is one of the major signaling systems in stem and progenitor cells, and(More)
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1)(More)
Drug resistance in gastric cancer largely results from the gastric cancer stem cells (GCSCs), which could be targeted to improve the efficacy of chemotherapy. In this study, we identified a subpopulation of GCSCs enriched in holoclones that expressed CD44(+)/Musashi-1(+) stem cell biomarkers, capable of self-renewal and proliferation. Enriched(More)
Mesenchymal stem cell-derived exosomes (MSC-Ex) play important roles in tissue injury repair, however, the roles of MSC-Ex in skin damage repair and its mechanisms are largely unknown. Herein, we examined the benefit of human umbilical cord MSC-derived exosome (hucMSC-Ex) in cutaneous wound healing using a rat skin burn model. We found that(More)
It has previously been implicated that nerve growth factor (NGF) with its high-affinity receptor tyrosine kinase A (TrkA) could play an important role in the growth modulation of human tumor cells, such as glioblastoma multiform cell lines and human breast cancer cell lines. However, the direct mitogenic effects of NGF and TrkA in these tumor cells still(More)
A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein. However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the(More)
As a natural health supplement, 3,3'-diindolylmethane (DIM) is proposed as a preventive and chemotherapeutic agent for cancer by inhibiting cell proliferation and inducing cell apoptosis. However, we found that in contrary to high level of DIM (30 μM), low level of DIM (1 μM and 10 μM) obviously promoted gastric cancer cell growth and migration. In(More)
Exosomes are small biological membrane vesicles secreted by various cells, including mesenchymal stem cells (MSCs). We previously reported that MSC-derived exosomes (MSC-Ex) can elicit hepatoprotective effects against toxicant-induced injury. However, the success of MSC-Ex-based therapy for treatment of liver diseases and the underlying mechanisms have not(More)
Extensive and dynamic chromatin remodeling occurs after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate early embryonic development. Histone H3 lysine 4 methylation (H3K4me) is an important epigenetic mechanism that associates with(More)