Learn More
Toll-like receptors (TLR) play an important role in pathogen recognition and innate immunity. We investigated the presence and function of TLRs in the BEAS-2B airway epithelial cell line and primary bronchial epithelial cells. Standard real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and Taqman RT-PCR revealed that BEAS-2B cells(More)
The respiratory epithelium is vulnerable to noxious substances, resulting in the shedding of cells and decreased protection. Zinc (Zn), an antioxidant and cytoprotectant, can suppress apoptosis in a variety of cells. Here we used the novel Zn-specific fluorophore Zinquin to visualize and quantify labile intracellular Zn in respiratory epithelial cells.(More)
Zn may have an important protective role in the respiratory epithelium and Zn deficiency may enhance airway inflammation and epithelial damage. The effects of mild nutritional Zn deficiency on airway hyperresponsiveness (AHR) and airway inflammation in mice sensitized and challenged with ovalbumin (OVA) to induce an allergic response were investigated.(More)
In addition to its diverse role in many physiological systems, zinc (Zn) has now been shown to be an important regulator of apoptosis. The purpose of this review is to integrate previously published knowledge on Zn and apoptosis with current attempts to elucidate the mechanisms of action of this biometal. This paper begins with an introduction to apoptosis(More)
The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to(More)
Non-toxic agents that target intracellular signalling pathways in apoptosis may have potential therapeutic use in many diseases. One such agent is the transition metal Zn, a dietary cytoprotectant and anti-oxidant, which stimulates cell proliferation and suppresses apoptosis. Zn is maintained in discrete subcellular pools that are critical for the(More)
In addition to basic housekeeping roles in metalloenzymes and transcription factors, dietary zinc (Zn) is an important immunoregulatory agent, growth cofactor, and cytoprotectant with anti-oxidant, anti-apoptotic, and anti-inflammatory roles. These properties of Zn are of particular importance in maintaining homeostasis of epithelial tissues which are at(More)
BACKGROUND Genetic studies on chronic inflammatory diseases have resulted in an emphasis on the epithelial interface with the environment and the genes that influence this interaction. This study examines the expression of key epithelial genes implicated in the pathogenesis of other inflammatory disorders for their role in chronic rhinosinusitis (CRS). (More)
The epithelium lining the airways is a physical barrier as well as a regulator of physiological and pathological events in the respiratory system. Damage to the epithelium by oxidants released from inflammatory cells is a critical factor in the pathogenesis of airway inflammatory diseases such as bronchial asthma. In these diseases, excessive apoptosis may(More)
Airway epithelial cells (AEC) contain both pro- and anti-apoptotic factors but little is known about mechanisms regulating apoptosis of these cells. In this study we have examined the localization of pro-caspase-3 and Zn(2+), a cellular regulator of pro-caspase-3, in primary sheep and human AEC. Zn(2+) was concentrated in both cytoplasmic vesicles and(More)