Learn More
Two major adaptive strategies used by Zygophyllum xanthoxylum, a C3 succulent xerophyte, against arid environments are absorbing a great quantity of Na+ from low-salinity soil which is efficiently transported to the leaves, and maintaining the stability of K+ concentration in those leaves. The plasma membrane Na+/H+ antiporter SOS1 has been suggested to be(More)
Accumulating a great quantity of Na+, maintaining the stability of the concentration of important nutrition elements, increasing the activities of enzymes related to ROS-scavenging are crucial strategies for the xerophyte Zygophyllum xanthoxylum surviving under adverse saline and drought environments; besides, actively regulating the photosynthesis is also(More)
Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0-400 mM). The results showed that the growth of(More)
Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation.(More)
The Shaker AKT1-like channels are considered to be involved in both high- and low-affinity K+ uptake and correlated with salt tolerance in glycophytes. Suaeda salsa (Suaeda maritima subsp. salsa), as a typical salt-accumulating halophyte, is able to absorb K+ efficiently while growing under saline conditions and taking in a large amount of Na+, thus(More)
Salinity is a serious problem for agricultural production worldwide. Reducing Na+ influx is one of the key steps for controlling Na+ accumulation in plants and improving salt tolerance of crop plants. Researches on a number of species are now converging on HKT-type and KUP/HAK/KT type proteins, both of them are probable candidates of Na+ uptake into the(More)
Salinization, desertification, and soil nutrient deprivation are threatening the production of alfalfa (Medicago sativa L.) in northern China. We have previously generated T0 transgenic alfalfa co-overexpressing Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 genes with enhanced salt and drought tolerance. To further develop this excellent breeding material into(More)
Puccinellia tenuiflora is a typical salt-excluding halophytic grass with excellent salt tolerance. Plasma membrane Na + /H + transporter SOS1, HKT-type protein and tonoplast Na + /H + antiporter NHX1 are key Na + transporters involved in plant salt tolerance. Based on our previous research, we had proposed a function model for these transporters in Na +(More)
  • 1