Learn More
Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately one-half of(More)
The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent(More)
Convergence of visual motion information (optic flow) and vestibular signals is important for self-motion perception, and such convergence has been observed in the dorsal medial superior temporal (MSTd) and ventral intraparietal areas. In contrast, the parieto-insular vestibular cortex (PIVC), a cortical vestibular area in the sylvian fissure, is not(More)
Vestibular responses have been reported in the parietoinsular vestibular cortex (PIVC), the ventral intraparietal area (VIP), and the dorsal medial superior temporal area (MSTd) of macaques. However, differences between areas remain largely unknown, and it is not clear whether there is a hierarchy in cortical vestibular processing. We examine the(More)
The ventral intraparietal area (VIP) of the macaque brain is a multimodal cortical region with directionally selective responses to visual and vestibular stimuli. To explore how these signals contribute to self-motion perception, neural activity in VIP was monitored while macaques performed a fine heading discrimination task based on vestibular, visual, or(More)
UNLABELLED How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area,(More)
In the present study, the electrical activities of paired retinal ganglion cells, under full field light stimuli with a variety of chromatic configurations, were recorded from a small functioning piece of retina using multi-electrode array (MEA). Neurons that had increased firings at light-ON and -OFF transients and did not show color-opponent properties(More)
In the present study, the activity changes of chicken retinal ganglion cells in response to light stimuli with defined contrast were investigated, in the presence of various levels of sustained background illumination. Following a step increase of light illumination, the firing rate of most retinal ganglion cells increased abruptly, and then decreased to a(More)
Spike sorting is the mandatory first step in analyzing multiunit recording signals for studying information processing mechanisms within the nervous system. Extracellular recordings usually contain overlapped spikes produced by a number of neurons adjacent to the electrode, together with unknown background noise, which in turn induce some difficulties in(More)
In the present study, the light responses of ganglion cells to chromatic stimulus were recorded from isolated retina of neonatal chick. It was found that for some non-color-opponent ganglion cells, the spatiotemporal patterns of the cells' light responses were related to the chromatic information that they received. When stimulus with some chromatic(More)