Ai-Hua Chen

Learn More
In the present study, the activity changes of chicken retinal ganglion cells in response to light stimuli with defined contrast were investigated, in the presence of various levels of sustained background illumination. Following a step increase of light illumination, the firing rate of most retinal ganglion cells increased abruptly, and then decreased to a(More)
In the present study, the electrical activities of paired retinal ganglion cells, under full field light stimuli with a variety of chromatic configurations, were recorded from a small functioning piece of retina using multi-electrode array (MEA). Neurons that had increased firings at light-ON and -OFF transients and did not show color-opponent properties(More)
Spike sorting is the mandatory first step in analyzing multiunit recording signals for studying information processing mechanisms within the nervous system. Extracellular recordings usually contain overlapped spikes produced by a number of neurons adjacent to the electrode, together with unknown background noise, which in turn induce some difficulties in(More)
During adaptation to high-contrast stimulation, retinal ganglion cell's responsiveness change is characterized by decreased firing rate and declined sensitivity. In order to examine the modification of information transmission properties of the ganglion cell during this adaptation process, neural activities were recorded extracellularly from the chicken(More)
In the present study, the light responses of ganglion cells to chromatic stimulus were recorded from isolated retina of neonatal chick. It was found that for some non-color-opponent ganglion cells, the spatiotemporal patterns of the cells' light responses were related to the chromatic information that they received. When stimulus with some chromatic(More)
Aldehyde stress contributes to molecular mechanisms of cell death and the pathogenesis of Parkinson’s disease (PD). The neurotoxin 1-Methy-4-Phenylpyridinium Ion (MPP+) is commonly used to model PD. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme detoxifying aldehydes. The aim of this study is to evaluate whether MPP+-induced neurotoxicity is(More)
  • 1