Ahsan H. Khandoker

Learn More
Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG(More)
Obstructive sleep apnea or hypopnea causes a pause or reduction in airflow with continuous breathing effort. The aim of this study is to identify individual apnea and hypopnea events from normal breathing events using wavelet-based features of 5-s ECG signals (sampling rate = 250 Hz) and estimate the surrogate apnea index (AI)/hypopnea index (HI) (AHI).(More)
Trip related falls are a prevalent problem in the elderly. Early identification of at-risk gait can help prevent falls and injuries. The main aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum foot clearance (MFC)] in comparison to MFC histogram plot analysis in extracting features for(More)
Current research applying variability measures of gait parameters has demonstrated promise for helping to solve one of the "holy grails" of geriatric research by defining markers that can be used to prospectively identify persons at risk of falling . The minimum toe clearance (MTC) event occurs during the leg swing phase of the gait cycle and is a task(More)
BACKGROUND Poincaré plot is one of the important techniques used for visually representing the heart rate variability. It is valuable due to its ability to display nonlinear aspects of the data sequence. However, the problem lies in capturing temporal information of the plot quantitatively. The standard descriptors used in quantifying the Poincaré plot(More)
Advances in sensor technology, personal mobile devices, wireless broadband communications, and Cloud computing are enabling real-time collection and dissemination of personal health data to patients and health-care professionals anytime and from anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful in terms of(More)
Patients with obstructive sleep apnoea syndrome (OSAS) are at increased risk of developing hypertension and other cardiovascular diseases. This paper explores the use of support vector machines (SVMs) for automated recognition of patients with OSAS types (+/-) using features extracted from nocturnal ECG recordings, and compares its performance with other(More)
The Poincaré map is a visual technique to recognize the hidden correlation patterns of a time series signal. The standard descriptors of the Poincaré map are used to quantify the plot that measures the gross variability of the time series data. However, the problem lies in capturing temporal information of the plot quantitatively. In this article, we(More)
We investigate whether pulse rate variability (PRV) extracted from finger photo-plethysmography (Pleth) waveforms can be the substitute of heart rate variability (HRV) from RR intervals of ECG signals during obstructive sleep apnea (OSA). Simultaneous measurements (ECG and Pleth) were taken from 29 healthy subjects during normal (undisturbed sleep)(More)
Early sub-clinical assessment of severity of cardiac autonomic neuropathy (CAN) and intervention are of prime importance for risk stratification and early treatment in preventing sudden death due to silent myocardial infarction. The Ewing battery is currently the diagnostic tool of choice but is unable to detect sub-clinical disease and requires patient(More)