Ahmed Murtaz Khalid

Learn More
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in(More)
AIMS Myocardial fatty acid (FA) oxidation is regulated acutely by the FA supply and chronically at the transcriptional level owing to FA activation of peroxisome proliferator-activated receptor-alpha (PPARalpha). However, in vivo administration of PPARalpha ligands has not been shown to increase cardiac FA oxidation. In this study we have examined the(More)
Peroxisome proliferator-activated receptors (PPARs) play an important role in the transcriptional regulation of lipid utilization and storage in several organs, including liver and heart. Our working hypothesis is that treatment of obesity/hyperlipedemia with the PPARalpha ligand fenofibrate leads to drainage of plasma lipids by the liver, resulting in(More)
The aim of the present study was to investigate the effects of oil extracted from the zooplankton Calanus finmarchicus (Calanus oil) on diet-induced obesity and obesity-related disorders in mice. C57BL/6J mice fed a high-fat diet (HFD, 45% energy from fat) exhibited increased body weight and abdominal fat accumulation as well as impaired glucose tolerance(More)
We showed previously that dietary supplementation with oil from the marine zooplankton Calanus finmarchicus (Calanus oil) attenuates obesity, inflammation, and glucose intolerance in mice. More than 80% of Calanus oil consists of wax esters, i.e., long-chain fatty alcohols linked to long-chain fatty acids. In the present study, we compared the metabolic(More)
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice,(More)
tetradecylthioacetic acid in type 2 diabetic mice 2 3 Ahmed M. Khalid, Anne Dragøy Hafstad, Terje S. Larsen, David L. Severson, Neoma 4 Boardman, Martin Hagve, Rolf K. Berge and Ellen Aasum 5 6 (Ahmed M. Khalid and Anne D. Hafstad have made equal contributions to this paper) 7 1 Cardiovascular Research Group, Department of Medical Biology, Faculty of Health(More)
  • 1