Ahmed C. Ammari

Learn More
To cope with the variations and uncertainties that emanate from hardware and application characteristics, dynamic power management (DPM) frameworks must be able to learn about the system inputs and environment and adjust the power management policy on the fly. In this paper we present an online adaptive DPM technique based on model-free reinforcement(More)
H.264/AVC (Advanced Video Codec) is a new video coding standard developed by a joint effort of the ITU-TVCEG and ISO/IEC MPEG. This standard provides higher coding efficiency relative to former standards at the expense of higher computational requirements. Implementing the H.264 video encoder for an embedded System-on-Chip (SoC) is a big challenge. For an(More)
H.264/AVC (Advanced Video Codec) is a new video coding standard developed by a joint effort of the ITU-TVCEG and ISO/IEC MPEG. This standard provides higher coding efficiency relative to former standards at the expense of higher computational requirements. Implementing the H.264 video encoder for an embedded System-on-Chip (SoC) is a big challenge. For an(More)
H.264/AVC (Advanced Video Codec) is a new video coding standard developed by a joint effort of the ITU-TVCEG and ISO/IEC MPEG. This standard provides higher coding efficiency relative to former standards at the expense of higher computational requirements. Implementing the H.264 video encoder for an embedded System-on-Chip (SoC) is thus a big challenge. For(More)
—This paper addresses the problem of extending battery service lifetime in a portable electronic system while maintaining an acceptable performance degradation level. The proposed dynamic power management (DPM) framework is based on model-free reinforcement learning (RL) technique. In this DPM framework, the Power Manager (PM) adapts the system operating(More)
In this paper we present a dynamic power management (DPM) framework based on model-free reinforcement learning (RL) techniques. For the RL algorithms, we employ both temporal difference learning and Q-learning for semi-Markov decision process in a continuous-time manner. The proposed DPM is model-free and do not require any prior information of the workload(More)
1. Introduction Power consumption in battery operated portable devices is nowadays a major concern. Such systems generally contain many I/O device components, ranging from digital and analog to electro-mechanical and electro-chemical. For these systems, the major energy dissipation is coming from these I/O devices. Dynamic power management (DPM) refers to a(More)