Ahmad F. Khadem

Learn More
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and(More)
"Candidatus Methylacidiphilum fumariolicum" SolV is a verrucomicrobial methanotroph that can grow in extremely acidic environments at high temperature. Strain SolV fixes carbon dioxide (CO(2)) via the Calvin-Benson-Bassham cycle with methane as energy source, a trait so far very unusual in methanotrophs. In this study, the ability of "Ca. M. fumariolicum"(More)
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely(More)
Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of "Ca. Methylacidiphilum fumariolicum" strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH(4) is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable(More)
Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium,(More)
  • 1