Learn More
Growth of Methylacidiphilum fumariolicum SolV, an extremely acidophilic methanotrophic microbe isolated from an Italian volcanic mudpot, is shown to be strictly dependent on the presence of lanthanides, a group of rare earth elements (REEs) such as lanthanum (Ln), cerium (Ce), praseodymium (Pr) and neodymium (Nd). After fractionation of the bacterial cells(More)
Sulfate reduction (SR) coupled to anaerobic oxidation of methane (AOM) is meditated by marine microorganisms and forms an important process in the global sulfur and carbon cycle. In this research, the possibility to use this process for the removal and recovery of sulfur and metal compounds from waste streams was investigated. A membrane bioreactor was used(More)
Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in(More)
The ability to utilize atmospheric nitrogen (N(2)) as a sole nitrogen source is an important trait for prokaryotes. Knowledge of N(2) fixation by methanotrophs is needed to understand their role in nitrogen cycling in different environments. The verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' strain SolV was investigated for its ability to(More)
"Candidatus Methylacidiphilum fumariolicum" SolV is a verrucomicrobial methanotroph that can grow in extremely acidic environments at high temperature. Strain SolV fixes carbon dioxide (CO(2)) via the Calvin-Benson-Bassham cycle with methane as energy source, a trait so far very unusual in methanotrophs. In this study, the ability of "Ca. M. fumariolicum"(More)
The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing(More)
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and(More)
Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium,(More)
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely(More)
Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of "Ca. Methylacidiphilum fumariolicum" strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH(4) is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable(More)