Ahlam Zaid Alkilani

Learn More
We describe formulation and evaluation of novel dissolving polymeric microneedle (MN) arrays for the facilitated delivery of low molecular weight, high dose drugs. Ibuprofen sodium was used as the model here and was successfully formulated at approximately 50% w/w in the dry state using the copolymer poly(methylvinylether/maleic acid). These MNs were robust(More)
We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and(More)
To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device. A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers(More)
We describe, for the first time, considerations in the sterile manufacture of polymeric microneedle arrays. Microneedles (MN) made from dissolving polymeric matrices and loaded with the model drugs ovalbumin (OVA) and ibuprofen sodium and hydrogel-forming MN composed of “super-swelling” polymers and their corresponding lyophilised wafer drug reservoirs(More)
We present "one-step application" dissolving and hydrogel-forming microneedle arrays (MN) for enhanced delivery of photosensitizers/precursors. MN (280 μm) prepared from 20% w/w poly(methylvinylether/maelic acid) and cross-linked with glycerol by esterification to form hydrogels upon skin insertion, or allowed to dissolve rapidly in skin, were combined with(More)
It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery as well as enabling the rate of delivery to be achieved with precise electronic control. However, few reports exist on the combination of ITP with in situ(More)
The aim of this study was to investigate the effect of commonly used penetration enhancers on the viscoelastic properties and in vitro drug release from topical gel formulations. Three penetration enhancers, diethylene glycol monoethyl ether (Transcutol®-P, TC), propylene glycol (PG), and 70 % ethanol were selected in this study. The non-steroidal(More)
  • 1