Learn More
The mouse insulin-like growth factor type 2 receptor (Igf2r) is imprinted and expressed exclusively from the maternally inherited chromosome. To investigate whether methylation could function as the imprinting signal, we have cloned 130 kb from the Igf2r locus and searched for sequences methylated in a parental-specific manner. Two regions have been(More)
The three-way connection between DNA methylation, gene activity and chromatin structure has been known for almost two decades. Nevertheless, the molecular link between methyl groups on the DNA and the positioning of nucleosomes to form an inactive chromatin configuration was missing. This review discusses recent experimental data that may, for the first(More)
In most higher organisms, DNA is modified after synthesis by the enzymatic conversion of many cytosine residues to 5-methylcytosine. For several years, control of gene activity by DNA methylation has been recognized as a logically attractive possibility, but experimental support has proved elusive. However, there is now reason to believe, from recent(More)
Methylation patterns of specific genes have been studied by polymerase chain reaction and found to undergo dynamic changes in the germ line and early embryo. Some CpG sites are methylated in sperm DNA and unmodified in mature oocytes, indicating that the parental genomes have differential methylation profiles. These differences, however, are erased by a(More)
We have investigated the DNA methylation patterns in genomically imprinted genes of the mouse. Both Igf2 and H19 are associated with clear-cut regions of allele-specific paternal modification in late embryonic and adult tissues. By using a sensitive PCR assay, it was possible to follow the methylation state of individual HpaII sites in these genes through(More)
Animal somatic cell DNA is characterized by a bimodal pattern of methylation: tissue-specific genes are methylated in most cell types whereas housekeeping genes have 5' CpG islands which are constitutively unmethylated. Because methyl moieties derived from the gametes are erased in the morula and early blastula, this profile must be re-established in every(More)
The mouse Snrpn gene encodes the Smn protein, which is involved in RNA splicing. The gene maps to a region in the central part of chromosome 7 that is syntenic to the Prader-Willi/Angelman syndromes (PWS-AS) region on human chromosome 15q11-q13. The mouse gene, like its human counterpart, is imprinted and paternally expressed, primarily in brain and heart.(More)
Rett syndrome (RS) is a severe and progressive neurodevelopmental disorder caused by heterozygous mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. MeCP2 is a nuclear protein that binds specifically to methylated DNA and functions as a general transcription repressor in the context of chromatin remodeling complexes. RS shares clinical(More)