Learn More
Many epithelia, including the superficial epithelia of the airways, are thought to secrete "volume sensors," which regulate the volume of the mucosal lining fluid. The epithelial Na(+) channel (ENaC) is often the rate limiting factor in fluid absorption, and must be cleaved by extracellular and/or intracellular proteases before it can conduct Na(+) and(More)
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl(-) secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na(+)(More)
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the(More)
Throughout the body, the epithelial Na(+) channel (ENaC) plays a critical role in salt and liquid homeostasis. In cystic fibrosis airways, for instance, improper regulation of ENaC results in hyperabsorption of sodium that causes dehydration of airway surface liquid. This dysregulation then contributes to mucus stasis and chronic lung infections. ENaC is(More)
Epithelial sodium channels (ENaCs) perform diverse physiological roles by mediating Na(+) absorption across epithelial surfaces throughout the body. Excessive Na(+) absorption in kidney and colon elevates blood pressure and in the airways disrupts mucociliary clearance. Potential therapies for disorders of Na(+) absorption require better understanding of(More)
Limited proteolysis, accomplished by endopeptidases, is a ubiquitous phenomenon underlying the regulation and activation of many enzymes, receptors, and other proteins synthesized as inactive precursors. Serine proteases make up one of the largest and most conserved families of endopeptidases involved in diverse cellular activities, including wound healing,(More)
The Epithelial Na(+) Channel (ENaC) is an apical heteromeric channel that mediates Na(+) entry into epithelial cells from the luminal cell surface. ENaC is activated by proteases that interact with the channel during biosynthesis or at the extracellular surface. Meprins are cell surface and secreted metalloproteinases of the kidney and intestine. We(More)
  • 1