Agnieszka K. Rzadzinska

Learn More
Planar cell polarity (PCP) refers to the polarization of cells within the plane of a cell sheet. A distinctive epithelial PCP in vertebrates is the uniform orientation of stereociliary bundles of the sensory hair cells in the mammalian cochlea. In addition to establishing epithelial PCP, planar polarization is also required for convergent extension (CE); a(More)
We have previously shown that the seemingly static paracrystalline actin core of hair cell stereocilia undergoes continuous turnover. Here, we used the same approach of transfecting hair cells with actin-green fluorescent protein (GFP) and espin-GFP to characterize the turnover process. Actin and espin are incorporated at the paracrystal tip and flow(More)
We have developed a bacterial artificial chromosome transgenesis approach that allowed the expression of myosin VIIa from the mouse X chromosome. We demonstrated the complementation of the Myo7a null mutant phenotype producing a fine mosaic of two types of sensory hair cells within inner ear epithelia of hemizygous transgenic females due to X inactivation.(More)
Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in(More)
In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action(More)
Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin(More)
Hearing and balance depend on microvilli-like actin-based projections of sensory hair cells called stereocilia. Their sensitivity to mechanical displacements on the nanometer scale requires a highly organized hair bundle in which the physical dimension of each stereocilium is tightly controlled. The length and diameter of each stereocilium are established(More)
Stereocilia, finger-like projections forming the hair bundle on the apical surface of sensory hair cells in the cochlea, are responsible for mechanosensation and ultimately the perception of sound. The actin cytoskeleton of the stereocilia contains hundreds of tightly cross-linked parallel actin filaments in a paracrystalline array and it is vital for their(More)
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family(More)
Disruption of the cellular composition or arrangement of the sensory epithelia due to hair cell or supporting cell damage leads to hearing loss and vestibular dysfunctions. These peripheral hearing disorders make good targets for gene therapy; however, development requires efficient gene transfer methods for the inner ear. Here we characterized the cellular(More)