Agneta S von Gegerfelt

Learn More
According to their capacity to replicate in vitro, human immunodeficiency virus (HIV) isolates can be divided into two major groups, rapid/high and slow/low. Rapid/high viruses can easily be transmitted to a variety of cell lines of T-lymphoid (CEM, H9, and Jurkat) and monocytoid (U937) origin. In contrast, slow/low viruses replicate transiently, if at all,(More)
Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4-5 post injection were paralleled by a rapid increase of IFN-γ, indicating(More)
We used optimized DNA expression vectors to compare two gene delivery methodologies in rhesus macaques, namely direct DNA injection and in vivo adaptive constant-current electroporation via the intramuscular route. The use of in vivo electroporation increased levels of gene expression and immune responses. We used an optimized HIV gag expression plasmid to(More)
Human immunodeficiency virus type 2 (HIV-2) has been reported to be less pathogenic than HIV-1. We have investigated the capacity of sera from nine HIV-2-infected individuals to neutralize their own autologous virus. All nine HIV-2-infected individuals neutralized autologous virus with titers ranging between 20 and 320. In contrast, we have previously(More)
We generated previously a Nef(-), replication-competent clone of SIVmac239 in which the Rev protein and the Rev-responsive element were replaced by the constitutive transport element (CTE) of simian retrovirus type 1 (A. S. von Gegerfelt and B. K. Felber, Virology 232:291-299, 1997). In the present report, we show that this virus was able to infect and(More)
The viral protein Rev is essential for the export of the subset of unspliced and partially spliced lentiviral mRNAs and the production of structural proteins. Rev and its RNA binding site RRE can be replaced in both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) by the constitutive RNA transport element CTE of the simian type D(More)
Optimized DNA vectors were constructed comprising the proteome of SIV including the structural, enzymatic, regulatory, and accessory proteins. In addition to native antigens as produced by the virus, fusion proteins and modified antigens with altered secretion, cellular localization and stability characteristics were generated. The DNA vectors were tested(More)
Optimized plasmid DNAs encoding the majority of SIVmac239 proteins and delivered by electroporation (EP) elicited strong immune responses in rhesus macaques. Vaccination decreased viremia in both the acute and chronic phases of infection after challenge with pathogenic SIVmac251. Two groups of macaques were vaccinated with DNA plasmids producing different(More)
We have tested the efficacy of DNA immunization as a single vaccination modality for rhesus macaques followed by highly pathogenic SIVmac251 challenge. To further improve immunogenicity of the native proteins, we generated expression vectors producing fusion of the proteins Gag and Env to the secreted chemokine MCP3, targeting the viral proteins to the(More)
Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE(More)