Learn More
The recent use of molecular dynamics (MD) simulations to study flexibility of nucleic acids has been reviewed from an analysis of the publications appearing in the past two years (from 2005 till date). Despite the existence of some unsolved problems in the methodologies, these years have been witness to major advances in the field. Based on a critical(More)
Different theoretical methods for the description of nucleic acid structures are reviewed. Firstly, we introduce the concept of classical force-field in the context of nucleic acid structures, discussing their accuracy. We then examine theoretical approaches to the description of nucleic acids based on: i) a rigid or quasi-rigid description of the molecule,(More)
We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B<-->A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both(More)
An extensive analysis of structural databases is carried out to investigate the relative flexibility of B-DNA and A-RNA duplexes in crystal form. Our results show that the general anisotropic concept of flexibility is not very useful to compare the deformability of B-DNA and A-RNA duplexes, since the flexibility patterns of B-DNA and A-RNA are quite(More)
We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available(More)
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly(More)
The structure and dynamic properties of different antisense related duplexes (DNA x RNA, 2'O-Me-DNA x RNA, 2'F-ANA x RNA, C5(Y)-propynyl-DNA x RNA, ANA x RNA, and control duplexes DNA x DNA and RNA x RNA) have been determined by means of long molecular dynamics simulations (covering more than 0.5 micros of fully solvated unrestrained MD simulation). The(More)
Different classical models for monovalent ions (typically used to neutralize proteins or nucleic acids) are available in the literature and are widely used in molecular dynamics simulations without a great knowledge of their quality, consistency with the macromolecular force field and impact on the global simulation results. In this paper the ability of(More)
Molecular dynamics is used to investigate the properties of the DNA.RNA hybrid in aqueous solution at room temperature. The structure of the hybrid is intermediate between A and B forms but, in general, closer to the canonical A-type helix. All the riboses exhibit North puckerings, while 2'-deoxyriboses exist in North, East, and South puckerings, the latter(More)
Small DNA circles can occur in Nature, for example as protein-constrained loops, and can be synthesized by a number of methods. Such small circles provide tractable systems for the study of the structure, thermodynamics and molecular dynamics of closed-circular DNA. In the present article, we review the occurrence and synthesis of small DNA circles, and(More)