Agnes M. Scherbart

Learn More
Inhalation of (nano)particles may lead to pulmonary inflammation. However, the precise mechanisms of particle uptake and generation of inflammatory mediators by alveolar macrophages (AM) are still poorly understood. The aim of this study was to investigate the interactions between particles and AM and their associated pro-inflammatory effects in relation to(More)
Enhanced cytotoxicity and oxidative stress through reactive oxygen species (ROS) formation are discussed as relevant parameters regarding potential hazardous properties of nanomaterials. In this study, the biocompatibility of five hydroxyapatite materials of different size and morphology, i.e., nano/needle-shaped (HA-NN), nano/rod-like (HA-NR),(More)
In view of the steadily increasing use of zinc oxide nanoparticles in various industrial and consumer applications, toxicological investigations to evaluate their safety are highly justified. We have investigated mechanisms of ZnO nanoparticle-induced apoptosis and necrosis in macrophages in relation to their important role in the clearance of inhaled(More)
The carcinogenicity of respirable quartz is considered to be driven by reactive oxygen species (ROS) generation in association with chronic inflammation. The contribution of phagocyte-derived ROS to inflammation, oxidative stress, and DNA damage responses was investigated in the lungs of C57BL/6J wild-type and p47(phox-/-) mice, 24h after pharyngeal(More)
Exposure to cement dust, a specifically alkaline and irritant dust, is one of the most common occupational dust exposures worldwide. Although several adverse respiratory health effects have been associated with cement dust exposure, the evidence is not conclusive. In the current study, cytotoxic and pro-inflammatory effects as well as oxidative stress(More)
The mechanism of enhancement/inhibition of quartz toxicity induced by iron is still unclear. Here the amount of iron on a fibrogenic quartz (Qz) was increased by wet impregnation (Fe(NO(3))(3) 0.67 and 6.7 wt %). X-ray diffraction (XRD), XRF diffuse reflectance, UV-vis, and infrared (IR) spectroscopies revealed dispersed ferric ions, and hematite aggregates(More)
Recent studies indicate that the brain is a target for toxic carbonaceous nanoparticles present in ambient air. It has been proposed that the neurotoxic effects of such particles are driven by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediated generation of reactive oxygen species (ROS) in activated microglia. In the present study, we have(More)
We have investigated whether short-term nose-only inhalation exposure to electric spark discharge-generated carbon nanoparticles (∼60 nm) causes oxidative stress and DNA damage responses in the lungs of rats (152 μg/m(3); 4 h) and mice (142 μg/m(3); 4 h, or three times 4 h). In both species, no pulmonary inflammation and toxicity were detected by(More)
  • 1