Learn More
This paper describes a combined modeling and experimental approach for the design and development of a polymer device to provide local drug therapy to thermally ablated solid tumors. The polymer device, in the shape of cylindrical millirod, will be implanted via image-guided procedures into the center of the ablated tumor. Drug released from the millirod(More)
RATIONALE AND OBJECTIVES The enhancement pattern of malignant tumors has been studied in short-term animal models (7-14 days), but the reported results have been variable and inconsistent. The purpose of this study was to investigate the changing blood flow characteristics of VX2 tumors implanted in rabbit livers with contrast-enhanced multidetector(More)
The advent of microbubble contrast agents has enhanced the capabilities of ultrasound as a medical imaging modality and stimulated innovative strategies for ultrasound-mediated drug and gene delivery. While the utilization of microbubbles as carrier vehicles has shown encouraging results in cancer therapy, their applicability has been limited by a large(More)
Previously, biodegradable polymer implants (polymer millirods) to release chemotherapeutic agents directly into tumors have been developed. The purpose of this study is to evaluate local drug distribution from these implants in liver tumors treated with radiofrequency (RF) ablation and determine if the implants provide a therapeutic improvement over RF(More)
PURPOSE To evaluate the use of 5-fluorouracil (5-FU)-laden polymer implants as an adjunct to radiofrequency (RF) ablation for tumor treatment. MATERIALS AND METHODS All animal studies were performed in compliance with the Case Western Reserve University Institutional Animal Care and Use Committee guidelines. Three studies were performed to investigate (a)(More)
The objective of this study was to examine the effects of three Pluronic triblock copolymers (F127, P85, or L61) on the cytotoxicity of carboplatin to the DHB/K12/TRb rat colorectal carcinoma cell line. Studies to determine the dependence of the sensitization effect on Pluronic dose were carried out for polymer concentrations ranging from 0.0001-10% (w/w).(More)
In situ forming drug delivery systems provide a means by which a controlled release depot can be physically inserted into a target site without the use of surgery. The release rate of drugs from these systems is often related to the rate of implant formation. Currently, only a limited number of techniques are available to monitor phase inversion, and none(More)
In situ forming implants (ISFIs) have shown promise in drug delivery applications due to their simple manufacturing and minimally invasive administration. Precise, reproducible control of drug release from ISFIs is essential to their successful clinical application. This study investigated the effect of varying the molar ratio of different molecular weight(More)
Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the(More)
OBJECTIVE The purpose of this study was to investigate whether an intralesional chemotherapy depot with or without a chemosensitizer could improve the efficacy of radiofrequency (RF) ablation in treatment of experimental carcinoma in rats. MATERIALS AND METHODS Eighteen BD-IX rats were inoculated with bilateral subcutaneous tumors via injection of(More)