Learn More
Regulator of G protein signaling (RGS) proteins function as GTPase accelerating proteins (GAP) for Galpha subunits, attenuating G-protein-coupled receptor signal transduction. The present study tested the ability of members of different subfamilies of RGS proteins to modulate both G-protein-dependent and -independent signaling in mammalian cells. RGS4,(More)
Varenicline (Chantix®, Champix®) is a nicotinic acetylcholine receptor (nAChR) partial agonist clinically approved for smoking cessation, yet its potential abuse liability properties have not been fully characterized. The nAChR ligand sazetidine-A has been reported as a selective full or partial agonist at α4β2* nAChR subtypes in in vitro studies. In the(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study(More)
The 5-HT1A and 5-HT1B serotonin receptors are expressed in a variety of neurons in the central nervous system. While the 5-HT1A receptor is found on somas and dendrites, the 5-HT1B receptor has been suggested to be localized predominantly on axon terminals. To study the intracellular addressing of these receptors, we have used in vitro systems including(More)
UNLABELLED The present studies assessed the potential abuse liability and likely mechanism(s) of action of the wake-promoting agent modafinil. METHODS Experiments assessed the locomotor sensitization (LS) and discriminative stimulus (DS) properties of modafinil in mouse and rat, respectively. Comparative data were generated with a range of(More)
Regulators of G-protein signaling (RGS) play a key role in the signal transduction of G-protein-coupled receptors (GPCRs). Specifically, RGS proteins function as GTPase accelerating proteins (GAPs) to dampen or "negatively regulate" GPCR-mediated signaling. Our group recently showed that RGS4 effectively GAPs Galpha(i)-mediated signaling in CHO cells(More)
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene. Tissue transglutaminase 2 (TG2), a multi-functional enzyme, was found to be increased both in HD patients and in mouse models of the disease. Furthermore, beneficial effects have been reported from the genetic(More)
A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a(More)
The 5-HT1B receptor is expressed on nerve terminals where it inhibits neurotransmitter release. When expressed ectopically in fibroblasts, the 5-HT1B receptor inhibits adenylyl cyclase. However, in the central nervous system, the effect of this receptor on neurotransmitter release appears to be cAMP-independent. We therefore investigated alternative(More)
RATIONALE Nicotinic acetylcholine receptor (nAChR) agonists, partial agonists, and antagonists have antidepressant-like effects in rodents and reduce symptoms of depression in humans. OBJECTIVES The study determined whether the antidepressant-like effect of the nAChR β2* partial agonist sazetidine-A (sazetidine) in the forced swim test was due to(More)